Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Омическое сопротивление

Таким образом, в условиях контроля процесса коррозии металлов диффузией кислорода природа катодных и анодных участков и омическое сопротивление электролита не влияют существенно на скорость процесса.  [c.244]

Эффективные электродные потенциалы и и омическое сопротивление R (так как прохождение тока вызывает изменение концентрации, а следовательно, и электропроводность раствора) зависят от плотности тока.  [c.268]


Поляризуемости анодного и катодного процессов имеют размерность омического сопротивления, их можно рассматривать как сопротивление протеканию анодного и катодного процессов соответственно.  [c.269]

В случае, если омическое сопротивление R очень мало (/ —> 0), уравнение (588) решаемо относительно /  [c.270]

Если омическое сопротивление корродирующей двухэлектродной системы не равно нулю, то можно также произвести графический расчет коррозионного процесса. По известному омическому сопротивлению определяем омическое падение потенциала ДУд  [c.271]

А. Н. Фрумкина и В. Г. Левича (1941 г.), а также измерения Г. В. Акимова и А. И. Голубева (1947 г.) подтверждают, что омическое сопротивление при коррозии металлов даже в растворах со сравнительно небольшой электропроводностью не оказывает заметного влияния на работу коррозионных микроэлементов (кроме случаев очень плохой электропроводности электролитов или коррозии металла под очень тонкой пленкой электролита), поэтому им в большинстве случаев можно пренебречь ( => 0).  [c.275]

Малые толщины слоя электролита при атмосферной коррозии металлов приводят к заметному увеличению омического сопротивления электролита при работе коррозионных микропар.  [c.377]

Грунтовые условия, в которых эксплуатируются металлические сооружения, весьма неодинаковы. Скорость коррозии металлов в грунте в значительной степени зависит от состава грунта, его влагоемкости (т. е. способности удерживать влагу) и воздухопроницаемости и определяется кинетикой электродных процессов, а в случае работы протяженных коррозионных пар также и омическим сопротивлением грунта. Следует отметить следующие основные факторы, определяющие скорость и характер грунтовой коррозии металлов  [c.386]

Компактная сварка основана на использовании повышенного омического сопротивления в стыке деталей и осуществляется несколькими способами.  [c.55]

Так как омическое сопротивление R с течением времени изменяется мало, наблюдаемое уменьшение силы коррозионного тока можно объяснить только смещением начальных потенциалов катода и анода Е° до значений и а (которые называют эффективными потенциалами при установившемся значении коррозионного тока /) таким образом, что разность и.х уменьшается.  [c.31]

Величина коррозионного тока зависит в первую очередь от протекания наиболее медленного элементарного процесса. Общее замедление коррозионного процесса может определяться степенью торможения анодного или катодного процесса и омического сопротивления. Стадию процесса, сопротивление которой значительно больше других стадий, называют контролирующим фактором. Контроль может быть анодным, катодным или омическим. Для того чтобы определить характер контроля, нужно сравнить сопротивление каждой из стадий процесса.  [c.50]


Наиболее простой вид имеет поляризационная диаграмма в случае, когда не тормозится ни анодный, ни катодный процесс (рис. 19, а). Разность потенциалов между действующими анодом и катодом остается постоянной во времени, а величина коррозионного тока определяется омическим сопротивлением цепи. Это — случай омического контроля процесса.  [c.50]

Только в случае коррозионных пар, имеющих достаточную большую протяженность (например, почвенная коррозия трубопроводов, коррозия под действием контакта в трубе и т. п.), приходится наряду с поляризационными характеристиками катода и анода учитывать также и омический фактор. Зная величину омического сопротивления коррозионных элементов, можно решать количественные вопросы о соотношении между торможением процесса коррозии омическим фактором и ранее рассмотренным анодным и катодным торможением, т. е. о соотношении между омическим, анодным и катодным контролем процесса.  [c.53]

Если система имеет омическое сопротивление Я, то омическое падение потенциала будет равно АУн = 1Я (прямая ОЖ). Графическое суммирование омического падения потенциала с прямой катодной поляризации ВБ дает суммарную прямую ВИ, точка пересечения которой Г с анодной прямой АБ дает коррозионный ток / в системе величина его определяется уравнением  [c.54]

Легирующий компонент должен давать окисел высокого омического сопротивления.  [c.146]

Электродинамические аналогии. Схожесть законов ряда колебательных процессов, рассматриваемых в разных областях физики, отмеченная в начале 94, объясняется тем, что колебания в этих случаях описываются одинаковыми дифференциальными уравнениями. Рассмотрим в качестве примера электрический контур, состоящий из последовательно соединенных катушки с индуктивностью L, омического сопротивления R, конденсатора с емкостью С и источника переменной электродвижущей силы (э. д. с.) (0 (рис. 268),  [c.249]

Когда-омическое Сопротивление отсутствует, Т = 2k L.  [c.250]

Эквивалентная схема диода, представленная на рис. 2.17, а, дополнена резисторами / о, учитывающим объемное омическое сопротивление полупроводника, и У у, учитывающим утечку по поверхности диода.  [c.91]

Датчик наклеивается на поверхность исследуемой детали так, чтобы размер базы I совпадал с направлением, в котором желательно замерить деформацию. При плотной приклейке проволочка удлиняется вместе с поверхностью исследуемого объекта и ее омическое сопротивление изменяется и регистрируется как показатель деформации.  [c.512]

Уменьшение коррозии при введении ингибиторов может произойти всдвдствйёГ торможения анодного процесса ионизации металла (анодные ингибиторы), катодного процесса деполяризации катодные ингибиторы), обоих процессов одновременно (смешанные анодно-катодные ингибиторы) ч- и увеличения омического сопротивления системы при образовании на металлической поверхиооти сорбционной плёнки, обдедающей пониженной электропроводностью .  [c.59]

На основании полученных при пересчете данных строят поляризационную диаграмму коррозии, предложенную Эвансом (1929 г.) Va = / I) и Ук = f П (рис. 182, а). Точка пересечения анодной и катодной кривых S отвечает значению максимального коррозионного тока / ах и общему стационарному потенциалу двухэлектродной системы V , которые соответствуют отсутствию омического сопротивления в данной системе R 0). Такие системы называют полностью заполяризованными (коротко-замкнутыми). Движущая сила коррозионного процесса—разность обратимых потенциалов катодного и анодного процессов Еобр == ( к)обр — ( а)обр — В ЭТИХ систбмах полностью израсходована на преодоление поляризационных сопротивлений анодного и катодного процессов, в результате чего на всей поверхности корродирующего металла устанавливаются потенциалы, очень близкие к значению V , т. е. поверхность металла практически изопотенциальная.  [c.271]

Описанный выше метод может быть использован и при наличии поляризационных кривых, полученных упрощенным методом, при котором измеряют силу тока / и разность потенциалов ДУ между двумя одинаковыми электродами из одного и того же металла, помещенными в электролит и одновременно катодно- и анодно-поляризуемыми от внешнего источника тока. Измерение омического сопротивления электролита исследуемой двухэлектродной системы / внутр с помощью мостика переменного тока позволяет определить омическое падение потенциала в электр05ште измерительной ячейки АУ = внутр/ и рассчитать поляризационный сдвиг потенциалов  [c.286]


Многоэлектродные системы с заметным омическим сопротивлением в цепи уже не являются полностью заполяризованными. В этих системах общий потенциал не устанавливается каждый электрод имеет свой индивидуальный эффективный потенциал, который с увеличением омического сопротивления в цепи данного электрода будет приближаться к обратимому значению Vo6p-  [c.299]

Потенциалы электродов, через которые проходит электрический ток, отличаются от потенциалов электродов, не нагруженных током замыкание цепи в коррозионном элементе приводит к изменению величин начальных потенциалов электродов. При усл0 ии, что омическое сопротивление элемента R мало, значение коррозионного тока 1нач после замыкания пары быстро падает и через определенное время становится равным устойчивой величине /, которая во много раз меньше первоначальной.  [c.31]

Если для электродных реакций — анодной и катодной — известны поляризационные кривые и соотношение площадей электродов, то поляризационная диаграмма коррозии, построенная на основании этих данных, может дать наиболее исчерпывающую характеристику данного коррозионного процесса (рис. 20), На оси абсцисс здесь отложен корро-зиоииый ток / (величина, пропорциональная скорости коррозии), на оси ординат— отрицательные значения потенциалов электродов — Е. Начальное пололсенне потенциалов и Е соответствует разомкнутому состоянию электродов (бесконечно большое омическое сопротивление) точка пересечения анодной и катодной кривых S соответствует короткому замыканию анода II катода без всякого омического сопротивления. Очевидно, что короткому замыканию будет соответствовать максимальный коррозионный ток /шях- В этом случае эффективные потенциалы катода и анода сближаются до общего потенциала коррозии Ех.  [c.52]

Для короткозамкнутой системы потенциалы отдельных составляющих выравниваются около общего потенциала. Условие короткозамкнутости может быть принято для больщннства коррозионных систем, если общее омическое сопротивление невелико (например, если отдельные составляющие системы находятся в нецосредственной близости друг к другу или если проводимость электролита достаточно велика).  [c.56]

О влиянии химического состава грунта на коррозию существуют разноречивые указания, однако совершенно очевидно, что степень коррозионной акти1зности грунта зависит от характера и количества водорастворимой части грунта. Повышение ее количества связано с уменьшением омического сопротивления среды и, следовательно, способствует усилению коррозионного процесса. На рис, 139 показано изменение электросопротивления грунта по мере повышения концентрации хлористого натрия в растворе. Нерастворимая часть грунта в процессе коррозии непосредственно не участвует.  [c.185]

Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими свойствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свинца и хромоникслсвых сталей, в 3—5 раз. По этой причине применение графита особенно эффективно для изготовления из него теплообмеиной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико-  [c.449]

Никелевые сплавы с высоким омическим сопротивлением. Твердые растворы па основе иикеля обладают высоким электросопротпвлс лием.  [c.311]

Для исключения влияния температуры датчики изготовляют из конетантаяа (60% Си и 40% Ni + Со), омическое сопротивление которого постоянно в широком днаямоне температур.  [c.155]

Сравним это уравнение с уравнением (90), в котором для общности будем считать, что вместо Q s mpt стоит Q i) видим, что тогда оба уравнения совпадают с точностью до обозначений. Следовате 1ьно, закон рассмот-репных выше механических колебаний и закон изменения заряда конденсатора аналогичны. При этом, сравнивая уравнения (90) и (101), найдем, что аналогами являются 1) для смещения (координаты) х — заряд q 2) для массы т — индуктивность L 3) для коэффициента вязкого сопротивления р, — омическое сопротивление R-, 4) для коэффициента жесткости с — величина 1/С, обратная емкости 5) для возмущающей силы Q — э. д. с. Е.  [c.250]

Если эта функция не отрицательна, то она называется функцией рассеивания или диссипативной функцией Ре-лея-, соответствующие силы Х> = —Bq называются диссипативными силами с положительным сопротивлением (или просто диссипативными силами). Если квадратичная форма F определенно-положительна, то диссипация называется полной, в противном случае — неполной. Наконец, если функция F может принимать отрицательные значения, то среди составляющих силы D = —Bq имеются ускоряющие силы силы отрицательного сопротивления). Обычно диссипативные силы с положительным сопротивлением возникают естественным обралом при движении тел в сопротивляющейся среде, в электрических цепях при наличии омического сопротивления и т. п. Ускоряющие силы (силы отрицательного сопротивления), как правило, создаются с помощью специальных устройств (см. пример 3 6.6).  [c.152]


Смотреть страницы где упоминается термин Омическое сопротивление : [c.194]    [c.272]    [c.272]    [c.279]    [c.299]    [c.386]    [c.459]    [c.31]    [c.54]    [c.56]    [c.186]    [c.36]    [c.36]    [c.515]    [c.37]    [c.110]    [c.301]    [c.175]   
Ингибиторы коррозии (1977) -- [ c.85 , c.86 , c.163 ]



ПОИСК



А4икроомметр для измерения омического сопротивления вторичных контуров сварочных маМагнитографический дефектоскоп для контроля сварных швов тип ВУМД

Высокого омического сопротивления из жаростойких сплавов

Высоколегированная нержавеющая, жаропрочная и сплавы с высоким омическим сопротивлением

Изготовление проволочных датчиков омического сопротивления

Измерение омического сопротивления растеканию

Измерительная аппаратура — Типы омического сопротивления

Коздоба. Применение метода электрического моделирования в сетках омических сопротивлений для решения задач нестационарной теплопроводности

Ленты Раскладка штампуемых из сплавов с высоким омическим сопротивлением

Многоэлектродные системы с заметным омическим сопротивлением

Омическое сопротивление микропар

Омическое сопротивление растеканию

Омическое сопротивление рельсовой нити

Проволока высокого омического сопротивления из жаростойких сплавов

Проволочные датчики омического сопротивления

Разъединительное устройство с омическим сопротивлением Разъединительное устройство с кремниевыми диодами

Расчет распределения плотностей тока по поверхности локального элеменОпределение характера поляризации и соотношение между поляризационным и омическим сопротивлением

Сопротивление емкостное, индуктивное, омическое

Сопротивление емкостное, индуктивное, омическое реактивное

Сплавы для нагревательных элементов с высоким омическим сопротивлением

Сплавы для электронагревателей см с высоким омическим сопротивлением —

Сплавы с высоким омическим сопротивление

Сплавы с высоким омическим сопротивлением Жуков)

Стали и сплавы с высоким омическим сопротивлением

Стали омическим сопротивлением

Сталь и сплавы с высоким омическим сопротивлением

Сталь омического сопротивления

Сталь рессорная горячекатанная с высоким омическим сопротивлением— Свойства 163 — Химический состав

Сталь с высоким омическим сопротивлением

Тензометры омического сопротивления

Удельный омического сопротивления

Устойчивость дуги, шунтированной активным (омическим) сопротивлением



© 2025 Mash-xxl.info Реклама на сайте