Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементарные теории напряжений и деформаций

ЭЛЕМЕНТАРНЫЕ ТЕОРИИ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ  [c.152]

Элементарные теории напряжений и деформаций 155  [c.155]

Продолжая аналогию между теорией напряжений и теорией деформаций, можно утверждать, что в каждой точке тела существует три взаимно перпендикулярных направления главных деформаций. В главных осях деформаций сдвиги равны нулю, и элементарный параллелепипед, выделенный плоскостями, перпендикулярными этим осям, переходит в другой прямоугольный параллелепипед без искажения углов между взаимно перпендикулярными ребрами. При этом угол между осью X и первым главным направлением определяется из формулы, аналогичной (4.7)  [c.125]


Однако следует отметить здесь те цели, которые имеются в виду при отыскании решений. Приближенные методы отыскания напряжений и деформаций в упругих телах, основанные на частных гипотезах простейшего характера, принято относить к тому, что называется сопротивлением материалов. Примером может служить приближенная теория растяжения и изгиба стержней, изложенная в гл. 2, 3 и 5. Теория упругости позволяет получить точное решение задачи изгиба для определенных случаев и сравнить его с приближенным таким образом, находится строгая оценка погрешности элементарной теории.  [c.266]

На основе теорий, рассматривающих механическое поведение композита в целом, можно получить близкое к действительности описание связи напряжений с деформациями в композиционном материале в том случае, когда отношение наибольшего характерного размера структуры к наименьшему характерному размеру неоднородности деформации достаточно мало по сравнению с единицей. Самые элементарные сведения о механическом поведении композита в целом находятся путем осреднения перемещений, напряжений и деформаций по представительному объему. Простейшая теория для таких осредненных параметров связывает средние напряжения со средними деформациями при помощи так называемых эффективных упругих постоянных. В этой теории, которая называется теорией эффективных модулей , механические свойства композита отождествляются со свойствами некоторой однородной, но, вообще говоря, анизотропной среды, эффективные модули которой определяются через упругие модули компонентов композита и параметры, характеризующие его структуру.  [c.355]

Проблема адекватного определения полей напряжений и деформаций в конструкциях при изменяющихся нагрузках, температурах и скоростях нагружения потребовала пересмотра существующих теорий неупругого деформирования и их надлежащего развития для отражения разнообразных эффектов, которые при однократном нагружении не обнаруживаются или могут не учитываться расчетом. Особенно существенными вторичные эффекты деформирования становятся при анализе поведения теплонапряженных конструкций. В данной главе рассматривается теория, в основе которой лежит представление о микронеоднородности реальных материалов (имеются в виду конструкционные сплавы) и возникающих в связи с ней в элементарных объемах тела несовместных неупругих деформациях. Изменяясь в процессе нестационарного нагружения, последние вместе с обусловленными ими микронапряжениями играют роль материальных носителей памяти материала, фиксирующих характерные особенности истории деформирования.  [c.168]


Монография написана, на наш взгляд, методически чрезвычайно удачно, вполне строго и вместе с тем достаточно просто. На основе традиционных концепций однородного напряженно деформированного состояния выясняются наиболее существенные особенности механического поведения вязких, упругих и высокоэластичных сред и предлагается оригинальный, сравнительно несложный метод формулирования соответствующих уравнений реологического состояния. Автор обходится элементарным математическим аппаратом векторного исчисления и системами лагранжевых координат с подвижным локальным векторным базисом (так называемые конвективные системы координат). Тем самым он облегчает неподготовленному читателю усвоение материала, добиваясь в первую очередь физической ясности изложения. Математически строгая постановка и анализ исследуемых задач в случае неоднородных напряжений и деформаций даются лишь в главе 12, где с помощью тензоров кратко излагается теория конечных деформаций в вязко-эластичных средах. Правда, здесь изложение слишком уж конспективно, и многочисленные доказательства , как правило, сводятся к перечню  [c.7]

В элементарной теории удара предполагается равномерное распределение напряжений и деформаций по длине цилиндра, что не всегда имеет место по двум причинам 1) вследствие трения на торцах образец при сжатии принимает бочкообразную форму и 2) при большой скорости деформации существенна конечная скорость распространения возмущений.  [c.262]

Для расчетов напряжений и деформаций наиболее часто применяется так называемый инженерный метод, основанный на совместном решении уравнений равновесия для элементарного объема металла, выделяемого в очаге деформаций, и уравнений пластичности. Принятые при этом упрощающие допущения не противоречат современной теории пластической механики и данным непосредственного опыта. При расчетах, разработанных рядом авторов, используются уравнения равновесия, условия пластичности, условия постоянства объема и уравнения связи между напряжениями и деформациями ( 2).  [c.15]

Применимость элементарной теории. Более строгий анализ задачи исключает первоначальные допущения, касающиеся формы изогнутой оси балки, приводящие к тому, что единственный не равный нулю компонент напряжения определяется выражением (23.4). Подставляя соответствующие выражения в соотношения между напряжением и деформацией, найдем компоненты деформации  [c.71]

В инженерной практике к методам теории упругости и теории пластичности прибегают обычно в особо ответственных случаях, подавляющее большинство расчетов производится на основе элементарных приемов. Эти элементарные приемы дают точные или почти точные результаты для стержней и стержневых систем, а определение напряжений и деформаций в стержнях, как уже указывалось, составляет одну из основных задач сопротивления материалов, и этому вопросу посвящена значительная часть настоящего курса. Но уже при изучении напряженного состояния в стержнях при растяжении мы столкнулись с группой задач, выходящих за рамки элементарного рассмотрения. Это задачи о концентрации напряжения. Для пластических материалов качественные рассуждения привели нас к заключению, что при расчете на прочность концентрацию напряжений учитывать не следует и Достаточно вести расчет по формуле  [c.105]

Книга соответствует традиционной программе машиностроительных вузов. Излагаются следующие разделы курса сопротивления материалов растяжение, кручение, изгиб, статически неопределимые системы, теория напряженного состояния, теория прочности, толстостенные трубы и тонкостенные оболочки, прочность при переменных напряжениях., расчеты при пластических деформациях, устойчивость и методы испытаний. Даются элементарные сведения пв композиционным материалам.  [c.32]

Для указанных тел чаще всего нет возможности получить элементарные формулы для определения напряжений, деформаций, перемещений. В то же время существуют некоторые общие пути решения задач, основанные на уравнениях, описывающих деформацию упругой среды под нагрузкой. Последовательное применение такого подхода, в принципе, дает возможность исследования сил упругости и перемещений в элементе конструкции любой формы. Эти уравнения и методы их решения изучаются в курсе теории упругости и пластичности.  [c.6]


Разберем это определение на примере деформации стержня, нагруженного через серьгу силой Р (рис. 1.14, а). Прочностной расчет стержня следует начать с замены действия на него серьги системой сил, распределенной по поверхности контакта, след которой АА, образующейся в результате их взаимной деформации. На рис. 1.14,6 схематически показана такая замена. Значение поверхностной интенсивности в каждой точке поверхности контакта может быть получено только методами теории упругости как результат решения сложной математической задачи. Такую задачу следует решать, если представляют интерес напряженное и деформированное состояния в заштрихованной области стержня. Для их определения за пределами этой области следует заменить распределенную нагрузку равнодействующей (рис. 1.14, в), величина которой элементарно находится из условия равновесия серьги (рис. 1.14, г). По принципу Сен-Венана, деформированное и напряженное состояние бруса за пределами заштрихованных областей в схемах нагружения бив будут практически одинаковы.  [c.22]

Элементарное решение задачи об ударе не учитывает возможных отскоков ударяющего тела и возможных повторных соударений его с системой до конца удара, волнового характера распространения деформаций и напряжений, контактных упругих и упругопластических деформаций в месте соприкосновения ударяющего тела и сечения системы. В связи с этим за пределами ограничений элементарная теория позволяет только оценить порядок перемещений и напряжений при ударе. Причем эта оценка для напряжений имеет гораздо меньшую точность, чем для перемещений.  [c.423]

В которой предполагается, что компоненты перемещений имеют вид (7.13), растяжение и изгиб не связаны друг с другом и могут рассматриваться по отдельности. Из полученных выше соотношений видно, что в элементарной теории изгиба балки напряжение о и энергия деформации U имеют вид  [c.188]

Элементарная теория балки, описанная в 7.1, основана на предположении (7.1) и гипотезе Бернулли—Эйлера. Однако из уравнения (7.13) имеем 8 = 8 == 0. Отсюда следует, что одновременное использование предположения (7.1) и гипотезы Бернулли— Эйлера приводит к невыполнению соотношений напряжения— деформации (1.10) и, следовательно, к неверным результатам. Такого рода противоречие содержится и в формулировках задач в 7..5 и 7.8. Мы пытались устранить эту трудность, приближенно полагая ст = = т г = О в трехмерных соотношениях напряжения—деформации и исключая 8j, и е .Для полного устранения противоречий и для уточнения теории балки можно считать, что  [c.208]

Отметим еще одно обстоятельство. Считая, что нормальный отрезок при деформации пластины только поворачивается, но не искривляется, мы приходим к равномерному распределению напряжений и Оу по толщине пластины, как это видно из (7.3) и (7.5). Но в действительности поперечные касательные напряжения распределяются по толщине неравномерно. В случае пластины постоянной толщины они обращаются в нуль при г = hI2, имея максимальное значение при Z == 0. Согласно элементарной теории изгиба тонких пластин напряжения и соответствующие деформации изменяются по толщине по квадратичному закону. При этом вклад в матрицу жесткости от деформаций поперечного сдвига оказывается несколько меньшим, чем по (7.22). В связи с этим вместо (7.22) иногда используется формула  [c.235]

Основным в этой теории является закон Дюгамеля — Неймана, который формулируется следующим образом. Пусть имеется элементарный объем и при некоторой температуре То в нем отсутствуют напряжения и деформации. При изменении температуры от Т о до Т (Г = Г— То) в нем возникает линейное поле смещений, которое приводит к однородным деформациям вида  [c.234]

Однако существенно больший интерес представляют такие задачи, для решения которых элементарные гипотезы не могут привести к цели. Типичный пример — задача о кручении призматического стержня. Если принять для кручения такую же гипотезу плоских сечений, которая была принята для изгиба, окажется, что верный результат получится только для того случая, когда сечение представляет собою круг или круговое кольцо для других форм сечения эта гипотеза приведет к очень грубой ошибке. Точно так же никакие элементарные нредно-ложения не позволяют найти напряжения в толстостенной трубе, подверженной действию внутреннего давления. Можно привести много примеров других элементов конструкций, для которых напряжения и деформации нельзя определить с помощью элементарных приемов, а нужно использовать уравнения теории упругости.  [c.266]

Основные соотношения классической теории упругости Линейиая классическая теория базируется на ряде гипотез, основными из которых являются предположения о сведении системы сил, действующих на элементарную площадку, только к рав недействующей (отсутствие моментов), о малости градиентов перемещений (линей пая связь между деформациями и перемещениями), об идеальной упругости материала (линейная связь между напряжениями и деформациями)  [c.137]

Уравнения (4.78) согласуются с результатами более чем 2000 опытов по анализу напряжений и деформаций при элементарных деформациях для 28 различных отожженных материалов. Как будет показано ниже, уравнения (4.78) также описывают данные экспериментов, полученные для полностью отожженного алюминия при совместном растяж нии и кручении при сложном нагружении, когда вслед за простым растяжением происходит кручение при постоянном уровне растяжения. Совсем недавно ряд опытов по растяжению и кручению образцов из полностью отожженных меди и алюминия при сложном нагружении, поставленных так, чтобы обеспечить более строгий контроль пригодности уравнений i) (4.78), показал, что эти уравнения являются одной из общих форм модифицированных определяющих уравнений теории течения. Коэффициенты поликристалличности и поверхности нагружения определяются по-прежнему уравнениями (4.74) и (4.75). Конечно, для всех случаев простого нагружения уравнения (4.77) и (4.78) описывают поведение образцов из полностью отожженных меди и алюминия.  [c.344]


ОС НОРшая задача механики деформируемого твердого тела — описание процессов деформирования с учетом экспериментальных данных, определяющие соотношения которых могли бы быть использованы при решении конкретных технических задач. Поэтому развитие теории механики деформируемого твердого тела идет по пути постепенного усложнения и уточнения определяющих соотношений по мере накопления экспериментальных данных. В качестве основной исходной характеристики обычно принимают деформацию. При упругом деформировании (простейший вид) определяющие уравнения связи между напряжениями и деформациями можно записать, в виде конечных соотношений, при пластическом деформиро Банин — в приращениях или дифференциалах. В последнем случае процесс нагружения-деформирования зависит только от последовательности наложения элементарных процессов (нагрузки, разгрузки, повторной нагрузки и т. п,) и не зависит от промежутков времени, в течение которых эти процессы происходят, т. е. окончательный результат не зависит от масштаба времени. В более общем случае деформирования деформации могут зависеть от масштаба времени, например, изменение деформаций во времени при постоянном напряжении. Поэтому принято полные деформации разделять на мгновенные, или упругопластические, и длительные деформации ползучести.  [c.3]

Наиболее важные исследования Мора можно найти в переработанном виде в собрании четырнадцати его избранных произведений (цит. в предыдущей сноске). Этот сборник содержит сообщения о принципах графостатики, связанных с идеями Вариньона и Кульмана, о геометрии масс и о напряжениях и деформациях (графические методы Мора для представления моментов инерции масс, распределенных в пространстЕе, и однородных напряженных состояний и малых деформаций) кроме того, там содержится фундаментальная теория механической прочности твердых тел и состояний предельного равновесия идеальной сыпучей среды, основанная на рассмотрении огибающей наибольших главных кругов напряжений (часть которой Мор опубликовал уже в 1882 г.), и метод проведения при помощи карандаша и линейки упругой линии балки путем построения веревочных линий. Инженеры обязаны Мору многими элементарными приемами, которые они повседневно используют при расчете ферм, мостов, подпорных стенок и деталей машин.  [c.532]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]

Распространение упругих однородных волн в стержнях было рассмотрено в элементарной постановке в 2.10 и 6.7. В 13.7, 13.8 были выявлены те ограничения, при которых элементарная теория применима (длинные волны) и в первом приближенни те поправки, которые нужно внести в результаты элементарной теории, относящейся к предполагаемой возможности распространения фронтов, несущих разрыв деформаций, напряжений и скоростей. Эти ограничения естественным образом снимаются, если рассматривать не волны в стержнях, а плоские волны в нолу-бесконечном теле, возникающие в том случае, когда к границе полубескопечного тела внезапно прикладывается нормальное давление или этой границе сообщается мгновенная скорость. Практически эксперименты подобного рода делаются на толстых плитах, заряд взрывчатого вещества укладывается на поверхности плиты и подрывается либо вторая плита бросается путем взрыва на первую так, что контакт возникает по всей поверхности одновременно. Создание действительно плоского фронта при этом довольно трудно, с одной стороны. С другой — измерения перемещений и скоростей возможны только на второй свободной поверхности плиты, от которой отражается приходящая ударная волна. Поэтому информация, извлекаемая из опытов подобного рода, довольно ограничена.  [c.565]

Книга соответствует традиционной программе машиностроительных вузов. Излагаются следующие разделы курса сопротивления материалов растяжение, кручение, изгиб, статически неопределимые системы, теория напряженного состояния, теория прочности, толстостенные трубы и "онкостенные оболочки, прочность при переменных напряжениях, ргсчеты при пластических деформациях устойчивость и методы испытаний. По сравнению с предыдущими изданиями она сокращена за счет разделов, которые на лекциях обычно не читаются, и дополнена некоторыми элементарными сведениями по композиционным материалам, получающим в настоящее время повсеместное распространение и общее признание.  [c.2]


В последующих же главах во втором томе, в частности в главах XI, XII, XIII, посвященных деформации стержней, аппарат теории сплошных сред (главным образом теория упругости) играет уже чисто служебную роль, как рабочий инструмент, с одной стороны, для оценки гипотез, используемых в элементарной теории, и границ применимости последней, а с другой стороны, для решения тех задач, которые не могут быть решены средствами элементарной теории. К числу последних относятся кручение призматических стержней некруглого поперечного сечения, свободное кручение валов переменного вдоль оси диаметра, определение полного касательного напряжения при поперечном изгибе балки, определение положения центра изгиба в поперечном сечении массивных стержней и др.  [c.13]

Напряженное состояние в составных цилиндрических оболочках с отдельно стоящими ребрами наиболее просто оценивается при-бл1женным методом, основанным на элементарной теории плоских сечений. Этот метод не учитывает краевые эффекты и влияние деформаций сдвига. Согласно принципу Сен-Венана можно ожидать, что вычисленные напряжения близки к действительным только в сечениях оболочки, достаточно удаленных от ее торцов. В случае, если длина оболочки соизмерима с ее диаметром, необходимы более точные методы расчета напряженно-деформированного состояния конструкции, полученные с применением моментной теории.  [c.163]

Общие соображения. Рассмотренные выше величины (силы, напряжения, перенос, вращение, деформация, скорость деформации и т. п.) необходимы для описания динамического и кинематического состояний элементарной частицы среды и могут быть названы механическими переменными. Они связаны, как мы знаем, только тремя уравнениями движения (4.1). Для построения замкнутой феноменологической теории движения сплошной среды должна быть также известна связь между динамическим и кинематическим состояниями частицы. Совокупность таких соотношений можно назвать механическими уравнениями состояния их необходимо отличать от уравнений движения (4.1), являющихся следствием принципа Даламбера и описывающих не суиГественную для состояния вещества механику переноса и вращения частицы среды.  [c.25]

Пусть упрочнение отсутствует, тогда из условия текучести Ми-зеса сразу вытекает, что t = onst, т. е. напряжения S = tsj — постоянные. Величина к пропорциональна приращению работы пластической деформации dAp. Суммируя приращения компонентов пластической деформации fef, получим компоненты пластической деформации ef обозначая сумму элементарных работ dAp через 2xj p, найдем из (15.1), что ef = Si, но это есть уравнения теории упруго-пластических деформаций (если вычесть слагаемые, относящиеся к упругой части деформации и следующие закону Гука).  [c.55]

Сдвиг во времени примерно на 5 мкс графиков зависимости напряжение — время, один из которых получен при помощи измерений посредством дифракционной решетки, а другой — прямым определением у плоскости удара при помощи пьезокристаллов, появляется из-за различного расположения этих двух средств измерения. Хотя уровень напряжений не превышал даже 35 кгс/мм , измеренная скорость дилатационной волны, составлявшая 8128 см/с в течение первых нескольких микросекунд после образования волны, превышала, как и предсказывал Трусделл, значение в 6350 см/с, полученное на основании элементарной теории. Вне непосредственной близости к зоне удара, за исключением весьма малых деформаций, не были обнаружены волны со скоростью, превышающей указанное значение, соответствующее элементарной теорией упругости, ни с помощью ультразвуковых измерений, ни с помощью квазиста-тических опытов.  [c.338]

То, что может быть названо элементарной теорией двойного лучепреломления, вызываемого напряжением или деформацией, созданной Нейманном, было распространено и на естественные кристаллы Покельсом в ряде работ, опубликованных в 1889 и 1890 гг.  [c.248]

В случае изотропного материала мы сразу же можем показать, что только две независимые постоянные входят в обобщенный закон Гука. Для этого мы должны использовать результаты предыдущих глав. Так, в теории напряжений (гл. VIII, 276) мы доказали, что в любой точке тела имеется элементарный параллелепипед, грани которого подвержены чисто нормальным напряжениям. Кроме того, в теории деформаций (гл. IX, 302) мы доказали, что в каждой точке тела можно найти параллелепипед, грани которого остаются также прямоугольными и после деформации. В первом случае напряжения на таких гранях назывались главными напряжениями . Удлинения ребер параллелепипеда во втором случае назывались главными удлинениями . Очевидно, что в материале, свойства которого не связаны с направлением, направления главных напряжений и главных деформаций должны совпадать. На самом деле ведь нет никаких причин для того, чтобы симметричная система чисто нормальных напряжений вызывала несимметричную деформацию, а деформация была бы несимметричной, если параллелепипед не оставался бы прямоугольным Следовательно, наиболее общая форма  [c.399]

Далее, Мор использует этот метод графического представления напряжений в построении своей теории прочности ). В то время большинство инженеров, работавших в области исследования напряжений, следуя Сен-Венану в выборе критерия разрушения, исходили из теории наибольшей деформации. Поперечные сечения элементов конструкций назначались отсюда расчета, чтобы наибольшая деформация в самой слабой точкс при наиболее неблагоприятном условии загружения пе превосходила допускаемого относительного удлинения при простом растяжении. Но уже на протяжении многих лет ряд ученых приписывал важную роль касательным напряжениям и отстаивал тот взгляд, что их влияние необходимо учитывать. Кулон уже исходил в своей теории прочности из того допущения, что разрушение должно ускоряться касательными напряжениями. Вика (см. стр. 104) критиковал элементарную теорию балки, в которой  [c.344]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]

А. Тимпе ), рассмотрев несколько частных случаев, пришел к решениям X. С. Головина для изгиба части кольца парами и силами, приложенными по концам. Круглое кольцо представляет собой простейший случай многосвязной области, и общее решение для него содержит многозначные члены. Тимпе дает физическое истолкование факту многозначности решений, принимая во внимание остаточные напряжения, возникающие в результате разрезания кольца, смещения одного конца в месте разреза относительно другого и последующего соединения их тем или иным способом. Как мы уже упоминали выше (см. стр. 421), общее исследование решений двумерных задач для многосвязных контуров было проведено Дж. Мичеллом ), показавшим, что распределение напряжений в этом случае не зависит от упругих постоянных материала, если объемные силы отсутствуют, а поверхностные силы таковы, что их равнодействующая обращается в нуль на каждом контуре. Это заключение представляет большую практическую важность в тех случаях, когда исследование напряжений производится поляризационно-оптическим методом. Случай кругового диска, нагруженного в произвольной точке сосредоточенными силами, был исследован Р. Миндлином ). Автор настоящей книги изучил частный случай напряженного кругового кольца, именно сжатие его двумя равными противоположно действующими по диаметру силами ). При этом было показано, что в сечении, расположенном на некотором расстоянии от точек приложения нагрузок, достаточно точным для практических целей является даваемое элементарной теорией Винклера гиперболическое распределение напряжений. Другие примеры деформации круговых колец были изучены Л. Файлоном ) и Г. Рейсснером ). К. В. Нельсон ) в связи с задачей  [c.486]



Смотреть страницы где упоминается термин Элементарные теории напряжений и деформаций : [c.153]    [c.453]    [c.506]    [c.381]    [c.352]    [c.162]    [c.188]   
Смотреть главы в:

Введение в теорию упругости для инженеров и физиков  -> Элементарные теории напряжений и деформаций



ПОИСК



597 — Деформации и напряжения

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ Теория напряжений

Теория деформаций

Теория напряжений

Теория напряжений и деформаций

Элементарная теория

Элементарные основы теории напряжений и деформаций



© 2025 Mash-xxl.info Реклама на сайте