Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теории феноменологические

Термодинамическая теория (феноменологический подход) и молекулярно-кинетическая теория (статистический подход) могут использоваться для исследования одних и тех же физических явлений, они стоят рядом и дополняют друг друга. Термодинамическая теория обладает следующим достоинством она не использует никаких гипотез о микроскопическом строении вещества, поэтому ее метод не зависит от новых открытий микрофизики закономерности термодинамики достоверны в такой же мере, в какой достоверны ее основные законы, например закон о сохранении энергии.  [c.6]


Создание общей теории феноменологических определяющих уравнений, устанавливающей общие формы связей между полями напряжений, деформаций, скоростей деформаций, температур для различных сред, является одной из фундаментальных проблем механики сплошных сред. При этом должны выполняться некоторые основополагающие принципы (постулаты). Рассмотрим принципы макроскопической определимости, физической допустимости и независимости от системы отсчета.  [c.130]

Чтобы было более понятным дальнейшее, напомним читателю вновь уравнения Блоха для спина. На электрон атома действует не только внешнее световое поле, но и другие возмущения. Например, в газе атом может сталкиваться с другими атомами. В твердом теле электрон может взаимодействовать с колебаниями решетки и т. д. Известно, что подобные эффекты приводят к затуханию дипольных моментов. Введем это затухание в теорию феноменологически, добавив в правую часть равенства (5.38) член затухания — уа. Константа затухания у имеет тот же самый смысл, что и обратное время поперечной релаксации для ядерных спинов. Таким образом, получаем для рассматриваемого атома следующее уравнение  [c.120]

В старой теории феноменологический подход к кривой кипения в большом объеме приводит к неправильному результату, заключающемуся в том, что эта кривая захватывает область, в которой кипение не происходит. Чтобы избежать подобных аномалий в новой теории, введем следующие определения  [c.156]

Этот раздел посвящен физическим понятиям, лежащим в основе теории простой жидкости. Математическая формулировка этих понятий будет дана в разд. 4-3. Обсуждаемые физические понятия имеют форму принципов, которые могут формулироваться либо как постулаты (если предпочесть аксиоматическую точку зрения), либо как более или менее самоочевидные положения, касающиеся поведения реальных текучих материалов (если предпочесть феноменологическую точку зрения). Такими принципами являются [1]  [c.130]

Турбулентные течения очень трудны для анализа даже в случае ньютоновских жидкостей, поскольку в настоящее время нет вполне удовлетворительной феноменологической теории, позволяющей вычислить член уравнения (7-1.23), описывающий напряжения Рейнольдса, V-(pv v ). В случае неньютоновских жидкостей нелинейность уравнения состояния приводит к значительным дополнительным трудностям, и возможный анализ с необходимостью носит лишь качественный характер.  [c.280]

Физические свойства макроскопических систем изучаются статистическим и термодинамическим методами. Статистический метод основан на использовании теории вероятностей и определенных моделей строения этих систем и представляет собой содержание статистической физики. Термодинамический метод не требует привлечения модельных представлений о структуре вещества и является феноменологическим (т. е. рассматривает феномены — явления в целом). При этом все основные выводы термодинамики можно получить методом дедукции, используя только два основных эмпирических закона (начала) термодинамики.  [c.6]


При разработке феноменологической модели используется теория ползучести с анизотропным упрочением [123, 251, 252, 369] (эта теория в отличие от теории упрочения [120, 157, 306] весьма точно описывает поведение материала при переменном направлении деформирования), разработанная с учетом случая деформирования материала в упругопластической области. При этом, как указывалось выше, под пластической деформацией понимается деформация, включающая как деформацию ползучести, так и мгновенную пластическую деформацию. Таким образом, теорию ползучести с анизотропным упрочнением можно интерпретировать как теорию пластического течения, когда кривые деформирования материала зависят от интенсивности скоростей пластических деформаций, и вместо вязкоупругой задачи рассматривать упругопластическую.  [c.14]

МЕХАНИКА СПЛОШНЫХ ГЕТЕРОГЕННЫХ СРЕД (ФЕНОМЕНОЛОГИЧЕСКАЯ ТЕОРИЯ)  [c.14]

Феноменологическая теория смесей с вращающимися дисперсными частицами при отсутствии внешних моментов была рассмотрена в работе Е. Ф. Афанасьева и В. Н. Николаевского [1]. В ней использовалось выражение (3.6.23) для момента d, действующего на частицу, а в выражение для силы /, помимо (3.6.23), из феноменологических соображений добавлялось слагаемое типа силы Магнуса или Жуковского, соответствующее влиянию относительного вращения —to (величины Aft)2i в [1] не учитывались) на силу со стороны несущей жидкости. Тут следует отметить, что для последовательного учета этого эффекта необходим учет инерционных сил в мелкомасштабном движении несущей фазы, так как в рамках ползущего или стоксова приближения, как видно из анализа, приведшего к (3.6.23), такое слагаемое не проявляется (см. 2 гл. 5).  [c.174]

Теория долговечности, строящая выводы на статистических данны.х. в сущности приложима к изделиям массового производства и в гораздо меньшей степени — к изделиям мелкосерийного и тем более единичного выпуска. В описанной выше трактовке теория долговечности исходит с феноменологических позиций, оперируя цифрами достигнутой долговечности. Гораздо большее значение имеет разработка методов повышения долговечности. Здесь на первый план выдвигается за/гача изучения физических закономерностей разрушения, износа и повреждения деталей (в зависимости от вида нагружения, свойств материала, состояния поверхностен и т. д.). Задачи эти настолько дифференцированы и специфичны, что вложить их в рамки общей теории долговечности едва ли возможно. Они решаются методами теории прочности, теории износа, а главным образом целенаправленной конструкторской и технологической работой над повышением долговечности.  [c.28]

Первые исследователи в области теории упругости (Л. Навье, О. Коши, С. Пуассон, Г. Ламе, Б. Клапейрон и др.) исходили из гипотезы о том, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают взаимодействия. Так как молекулярные механизмы в среде не рассматриваются и все вводимые понятия и величины представляются как средние макроскопические или феноменологические, то их принимают в качестве истинных. В этом состоит идеализация истинной физической среды в механике.  [c.24]

Несмотря на очевидное различие в способах генерирования и регистрации электромагнитных волн разного типа, можно показать, что законы распространения таких волн задаются одними и теми же дифференциальными уравнениями. Речь здесь идет об уравнениях Максвелла, в которых свойства среды учитываются введением соответствующих констант, а переход излучения из одной среды в другую определяется с помощью граничных условий для векторов напряженности электрического и магнитного полей. Использование метода, предложенного Максвеллом более 100 лет назад, позволяет построить единую теорию распространения электромагнитных волн и применить ее для описания основных свойств света. Такое феноменологическое рассмотрение  [c.9]

Соединение электронных явлений и электромагнитной теории света является заслугой Лоренца — крупнейшего физика, работавшего на рубеже XIX и XX вв., хотя появлению этой фундаментальной теории предшествовал ряд наблюдений, опытов и попыток их обобщения. Создание электронной теории дисперсии послужило шагом к развитию феноменологической электромагнитной теории путем дополнения ее анализом микропроцессов, происходящих в веществе под действием светового поля. Такое описание приводит к хорошему согласию эксперимента и теории, базирующейся на представлениях классической физики. Вопрос в том, как трансформируются введенные понятия при квантовом описании процессов в веществе, требует обсуждения.  [c.135]


Итак, МОЖНО считать, что в рамках феноменологической электромагнитной теории света вращение плоскости поляризации получило объяснение. Однако эта теория не способна объяснить, почему скорость волны в правовращающем веществе отлична от ее скорости в левовращающем.  [c.158]

В чем заключаются основные положения феноменологической теории вращения плоскости поляризации, предложенной Френелем  [c.455]

Как показывает опыт, деформация сплошной среды неразрывно связана с распределением температуры при этом изменяющееся во времени поле деформаций вызывает изменение поля температуры и наоборот. Построение теорий сплошной среды, учитывающих эффект взаимного влияния температурного и деформационного полей, возможно лишь с привлечением общих законов термодинамики и дополнительных феноменологических гипотез.  [c.50]

Важнейшим выводом теории Максвелла явилось положение, согласно которому скорость распространения электромагнитного поля в вакууме равняется отношению электромагнитных и электростатических единиц силы тока второй, не менее важный вывод гласил, что показатель преломления электромагнитных волн равняется У ер, где е — диэлектрическая, ар — магнитная проницаемости среды. Таким образом, скорость распространения электромагнитной волны, в частности света, оказалась связанной с константами вещества, в котором распространяется свет. Эти константы первоначально вводились в уравнения Максвелла формально и имели чисто феноменологический характер. Напомним, что в механической (упругой) теории никакой связи между оптическими характеристиками среды (скорость света) и ее механическими свойствами (упругость, плотность) установлено не было. Известно, что для целого ряда газообразных и жидких диэлектриков соотношение Максвелла п = Уе х е (ибо р. близко к 1) выполняется достаточно хорошо  [c.539]

Однако для многих других тел, например для стекла и таких жидкостей, как вода и спирты, е гораздо больше п . Так, для воды = 1,75, тогда как е = 81. Кроме того, как уже сказано, показатель преломления зависит от длины волны (дисперсия). Таким образом, выяснилась необходимость дополнения уравнений Максвелла какой-либо моделью среды, описывающей явление дисперсии. Трудности объяснения дисперсии света в рамках представлений электромагнитной теории полностью устраняются электронной теорией, позволившей дать молекулярное истолкование феноменологическим параметрам е и р, и объяснившей одновременно влияние частоты электромагнитного поля на е и, следовательно, на п.  [c.540]

В 68 указывалось, что возможны два пути построения теории ядерных сил. Первый путь заключается в феноменологическом подборе подходящего потенциала взаимодействия, который удовлетворяет найденным из эксперимента свойствам ядерных сил. Этот метод был достаточно подробно рассмотрен в предыдущей главе.  [c.548]

Достигнутые успехи очень существенны, однако они имеют в значительной степени феноменологический характер. Создание теории элементарных частиц все еще остается делом будущего.  [c.705]

В настоящем разделе рассмотрена элементарная теория дейтона, в последующих ( 4—7) —экспериментальные особенности и теоретическая интерпретация опытов по нейтрон-протон-ному и протон-протонному рассеянию при низких и высоких энергиях. Напомним, что конечной целью обоих рассмотрений является феноменологический подбор подходящего потенциала для описания нуклон-нуклонного взаимодействия (как при >0, так и при -<0).  [c.19]

Второй этап изучения элементарных частиц начался одновременно с опытами- по исследованию ядерных сил. Как известно (см. 5 и 6), в этих опытах были установлены такие существенные свойства ядерных сил, как малый радиус их действия, большая эффективность, насыщение, обменный характер и др. В 1 указывалось, что возможны два пути построения теории ядерных сил. Первый путь заключается в феноменологическом подборе подходящего потенциала взаимодействия, который должен удовлетворять найденным из эксперимента свойствам ядерных сил ( 3—6). Второй — во введении мезонного поля и квантов этого поля, которые должны переносить ядерное взаимодействие. Развитие этого пути привело Юкаву к предсказанию существования в качестве ядерного кванта мезона — частицы с массой 200—ЗОО/Пе (см. 2).  [c.107]

Лондонами в дополнение к уравнениям Максвелла были получены уравнения для электромагнитного поля в таком сверхпроводнике, из которых вытекали его основные свойства отсутствие сопротивления постоянному току и идеальный диамагнетизм. Однако в силу того, что теория Лондонов была феноменологической, она не отвечала на главный вопрос, что представляют собой сверхпроводящие электроны. Кроме того, она имела еще ряд недостатков, которые были устранены В. Л. Гинзбургом и Л. Д. Ландау.  [c.266]

Имеется несколько теорий пластичности. Общие их черты — феноменологический характер и ограниченное применение в практике инженерных расчетов. Отличительные — в том что одни построены на связи между напряжениями и деформациями, другие— на зависимости между напряжениями и скоростью течения деформации.  [c.103]

Зависимость показателя преломления вещества от длины волны или частоты света называется дисперсией света. Согласно теории Максвелла показатель преломления п среды связан с феноменологически введенными константами 8 и х соотношением которые в пер-  [c.81]

В последние годы был предложен ряд феноменологических теорий, рассматривающих границы раздела между фазами все они основываются на двухжидкостной модели сверхпроводников. Поверхностная энергия границы раздела между сверхпроводящей п нормальной фазами в этих теориях связывается с постепенным изменением параметра порядка а> от нуля в нормальной фазе до соответствующего, зависящего от температуры равновесного значения в сверхпроводящей фазе. Подробное рассмотрение этих теорий проводится в гл. IX, п. 28 и 29.  [c.651]


В.месте с тем в построении реалистич. модели В. о, имеются трудности, связанные с описанием скалярных частиц — т. н. Хиггса бозонов, наличие К-рых в теории обеспечивает (за счет Хиггса. кеханиз.ча) спонтанное нарушение симметрии и возникновение масс у про.межуточных векторных бозонов (переносчиков слабого взаимодействия), лептонов и кварков. В существующих моделях состав мультиплетов кварков, лептонов и скалярных частиц и спектр их масс не фиксируются си.м.метрие , а вводятся в теорию феноменологическя, Серьёзные трудности вызывает также объяснеппе различия на 12 порядков. масштабов расстояний, на к-ры1 происходит нарушение едино] симметрии G и си.чмет. рии ЭСВ (т. н. проблема иерархии).  [c.254]

После опубликования релаксационной теории Мандельштамом и Леонтовичем появились различные варианты релаксационной теории, феноменологической и молекулярной.  [c.286]

Современное состояние вопроса общего математического описания дисперсных систем нельзя признать до-статочло удовлетворительным, несмотря на растущий интерес к этой проблеме. Каж травило, в работах, шо-священных этому вопросу, фактически используется феноменологический подход к исследованию дисперсного потока в целом. Идея условного континуума п03(В0Ляет полностью использовать математический аппарат механики сплошных сред, но несет с собой погрешности физического порядка тем более существенные, чем значительней макроднскретность системы. Системы таких уравнений, полученные рядом авторов как общие, все же не охватывают класс дисперсных потоков во всем диапазоне концентраций (вплоть до плотного движущегося слоя). Они не учитывают качественного изменения структуры потока и в связи с этим изменения закономерностей распределения частиц, появления новых сил (например, сухого трения), изменения с ростом концентрации (до предельно большой величины) условий однозначности и пр. В основном большинство работ посвящено турбулентному течению без ограничений по концентрациям, хотя при определенных значениях р наступает переход к флюидному транспорту, а затем — плотному слою. Сама теория турбулентности применительно к дисперсным потокам находится по существу в стадии становления (гл. 3). Наиболее перспективные методы — статистические (вероятностные) применяются мало, по-видимому, в силу недостаточной изученности временной и пространственной структур дисперсных систем Общим недостатком предложенных систем уравнений является их незамкнутость, которая объясняется отсутствием конкретных данных о тензорах напряжений и  [c.32]

Коэффициенты y.j, впервые введенные в [12], показывают долю диссипируемой кинетической энергии смеси из-за силового взаимодействия составляющих, переходящую непосредственно во внутреннюю энергию г-й,фазы. В связи с этил1 заметим, что составляющие межфазной силы F- , связанная с эффектом присоединенных масс и спла Магнуса приводят непосредственно к переходу части кинетической энергии макроскопического движения не во внутреннюю (тепловую) энергию фаз, а в кинетическую энергию мелкомасштабных течений внутри и около включений. Последняя, как уже указывалось, не учитывается в существующих феноменологических теориях взаимопроникающего движения, в ТОЛ числе и в данной главе, поэтому здесь силы и F i входят как диссипативные. Более точный учет эффекта этих сил дан в гл. 2-4.  [c.37]

Отношение между рассмотренным в данной главе подходом, связанным с осреднением более элементарных уравнений, п рассмотренным в гл. 1 феноменологическим подходом, аналогично известному отношению, имеющемуся между статистической физикой и механикой сплошной среды, между статистической физикой и термодинамикой, между молекулярно-кинетической теорией газа и газовой динамикой и т. д. В отличие от чисто феноменологического подхода нри осреднении микроуравнений для макроскопических параметров, таких, как макроскопические тензоры напряжений в фазах, величины, определяющие межфазные взаимодействия, получаются выражения, которые позволяют конкретнее представить их структуру и возможные способы их теоретического и экспериментального определения. С этой целью ниже рассмотрено получение уравнений сохранения массы, импульса, момента импульса и энергии для гетерогенных сред методом осреднения соответствующих уравнений нескольких однофазных сред с учетом граничных условий на межфазных поверхностях. При этом для упрощения рассматривается случай смеси двух фаз.  [c.52]

Связь с феноменологической теорией. В заключение отметим, что феноменологическая теория диснерспых смесей, рассмотренная в 3 гл. 1, соответствует некоторому частному случаю, когда помимо (3.1.44) или (3.1.45) можно принять  [c.102]

Отсутствие понятия энергии мелкомасштабного движения в гл. 1 п в других чисто феноменологических теориях взаимопроникающего движения вынуждает относить этот эффект практически к диссипативному, т. е. к переходу кинетической энергии макроскопического движения непосредственно во внутреннюю эпергпю в виде тепла.  [c.194]

Для выполнения расчетов процессов переноса на основе кинетической теории (уравнение переноса Больцмана) [588] требуются данные о молекулярном взаимодействии, которые значительно усложняют расчеты для некоторых газов [342] и неизвестны для большинства жидкостей [229]. Введением соответствующих феноменологических соотношений в механике сплошной среды [686] удается эффективно заменить фазовое пространство (координаты положения и количества движения) уравнения переноса Больцмана конфигурационным пространством (координаты положения) и свойствами переноса пос.ледние могут быть определены экспериментально. Это составляет основу второго из указанных выше методов исследования, который сравнительно недавно используется при изучении многофазных систем.  [c.16]

Сказанное о предпочтительности феноменологического подхода к вопросам предельного состояния нс зачеркивает практического значения нскоторь Х мшотез. Такие гипотезы, как гипотеза максимальных касательных напряжений и.ти энергии формоизменения, прочно вошли в расчетную практику и представляют большие удобства при решении конкретных задач. Гипотеза энергии формоизменения приобрела особое значение в связи с созданием и развитием теории пластичности (см. 83).  [c.269]

То, с чем мы до сих пор имели дело в настоящей главе — это экспериментальные факты и их феноменологическое описание, т.е. такое описание, при котором сам факт наличия разных фаз и фазовых превращений не следует автоматически из теории, а принимается как данный. Теория Ван-дер-Ваальса является простейшей микроскопичежой теорией, которая в известном смысле предсказывает существование этих явлений в системе газ—жидкость. Ее успех случаен причиной любых фазовых переходов является взаимодействие между частицами.  [c.137]

В теории надежности отмечается два основных подхода формирования моделей - полуэмпирический (феноменологический) и структурный. Феноменологический подход основан на обобщении результатов наблюдений и экспериментов, выявлении основных статистических закономерностей и прогнозировании функционирования технических систем. Среди этого класса моделей приведены многостадийная модель накопления повреждений, теория замедленного разрушения, статистическая модель разрушения и др. Структурный подход предусматривает прежде всего исследование структурных особенностей рассматриваемого объекта (например, при анализе прочностных свойств металлических деталей необходимо учитывачь структуру металла и связанных с ней дефектов - микро фещин, дислокаций, конфигурации и положения границ зерен и г.д.). Ко второму классу можно отнести моде ш хрупкого разрушения, пластического разрушения, так называемую объединенную структурную модель, причем автором особо подчеркивается перспективность дальнейшего развития структурного моделирования.  [c.128]


Дальнейшее продвижение по шкале в сторону еще более коротких электромагнитных волн представляется ненужным в рамках нашего курса. Но если даже ограничить шкалу электромагнитных волн, с одной стороны, УКВ, а с другой — рентгеновским излучением, то нужно считаться с тем, что у читателя неизбежно возникает вопрос, можно ли в рамках единой теории как-то связать эти разнородные процессы. Из дальнейшего мы увидим, сколь законны такие опасения, но следует еше раз указать, что классическая электромагнитная теория света — это феноменологическая теория, описываюгцая распространение электромагнитных волн в различных средах без детального анализа микропроцессов, что, конечно, ограничивает объем получаемой информации, но вместе с тем облегчает применение теории к описанию распространения радиации самых различных типов. Для получения необходимых сведений в некоторых случаях придется дополнять теорию соображениями о движении электронов в поле световой волны, обрыве их колебаний и другими предположениями электронной теории, конкретизирующими физическую картину рассматриваемых явлений, как это впервые сделал Лоренц в начале XX в.  [c.14]

Ниже показано, что основные оптические свойства метЕшлов могут быть рассмотрены в рамках развиваемой здесь феноменологической теории. Но прежде всего выясним специфичность этой задачи. Большинство металлов, как известно, характеризуется высоким коэффициентом отражения. Кроме того, даже в тонком слое металла излучение очень сильно поглощается. Опыт показывает также, что при отражении электромагнитной волны от металлической поверхности наблюдается эллиптическая поляризация излучения, отсутствующая лишь при нормальном падении.  [c.100]

Обычно и < и, что приводит к требованию ди/дХ > О, или dnjdX < О, т. е. указывает на нормальную дисперсию. Но эта феноменологическая теория не отвергает возможности возникновения аномальной дисперсии, когда ди/дХ < О, т.е дп/дХ > О, и и > и. Заметим, что вопрос о корректности формулы Рэлея в данном случае требует очень тонкого рассмотрения в связи с ос-  [c.137]

Рассмотренный способ позволяет привести к гамильтоновой форме системы уравнений, полученные феноменологически и не являющиеся экстремалями какой-либо вариационной задачи. Особый интерес представляют уравнения, описывающие химические реакции, различные экономические или экологические систсмы. После приведения к гамильтоновой форме решение уравнении может быть получено па основе мощных методов теории КП.  [c.314]

Величины Л 21, fii2. Bii получили название коэффициентов Эйнштейна. Они не зависят от температуры и являются характеристиками конкретного квантового перехода. В теории Эйнштейна они выступают в качестве феноменологических параметров.  [c.70]


Смотреть страницы где упоминается термин Теории феноменологические : [c.74]    [c.268]    [c.269]    [c.244]    [c.293]    [c.518]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.236 ]



ПОИСК



Вращение плоскости поляризации в кристаллических телах. Вращение плоскости поляризации в аморфных веществах. Феноменологическая теория вращения плоскости поляризации. Оптическая изомерия. Вращение плоскости поляризации в магнитном поле Искусственная анизотропия

Замечания к феноменологической теории

Калмыкова, О. В. Сорокин. Расчет на прочность вращающихся неравномерно нагретых турбинных дисков при пластичности и ползучести на основе феноменологической теории состояния реономного тела

Критические флуктуации (феноменологическая теория)

Локальные флуктуации (феноменологическая теория)

Механика сплошных гетерогенных сред (феноменологическая теория)

Общая феноменологическая теория

Простейшая феноменологическая теория

Теория континуальная феноменологическая

Теория континуальная феноменологическая дефектов

Теория одномерной ползучести феноменологическая

Феноменологическая теория линейной

Феноменологическая теория линейной вязкоупругости

Феноменологическая теория многоекороетпого континуума

Феноменологическая теория хрупкого разрушения

Феноменологические теории ползучести

Феноменологические теории упругости. сред со структурой

Феноменологические теории усталостного разрушения

Феноменологический подбор потенциала (IV— ЛО-взаимодейстЭлементарная теория дейтрона

Феноменологический подбор потенциала (N—N) -взаимодействия. Элементарная теория дейтона



© 2025 Mash-xxl.info Реклама на сайте