Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения устойчивости слоистых оболочек

Уравнения устойчивости слоистых оболочек  [c.59]

В гл. 5 получены разрешающее дифференциальное уравнение устойчивости слоистой цилиндрической оболочки относительно прогиба выпучивания с произвольным строением пакета по толщине и расчетные формулы для определения критических усилий при различных видах нагружения, в частности, в оболочках, изготовленных прямой, однозаходной, перекрестной и изотропной намотками. Сформулирована задача поиска оптимальных параметров неравномерно нагретых по толщине многослойных цилиндрических оболочек. Для случая, когда активным является ограничение по устойчивости, оценено влияние схемы армирования на критические параметры нагрузки и волнообразования. Эти исследования расширяют представление о роли проектных параметров оболочечных конструкций, оцениваемых по моделям В. И. Королева и С. А. Амбарцумяна.  [c.8]


Рассмотрены задачи выбора оптимальной намотки тонкостенных цилиндрических оболочек, теряющих устойчивость при кручении, при нормальном равномерно распределенном давлении, при осевом сжатии, при совместном действии осевого сжатия и давления и при совместном действии кручения и внешнего давления. Получены расчетные формулы для определения критических усилий в оболочках, изготовленных различными видами намотки, исходя из разрешающего дифференциального уравнения устойчивости слоистой цилиндрической оболочки для общего случая анизотропии материала, когда его оси не совпадают с главными линиями кривизны оболочки. Изучены виды намотки прямая, косая, перекрестная, изотропная. Проведено сравнение с результатами, полученными по приближенным формулам.  [c.197]

Рассматриваемое направление в механике многослойных оболочек широко представлено в уже цитированных публикациях. Особо отметим обстоятельный обзор Э.И. Григолюка и Г.М. Куликова [110],в котором даны классификация используемых гипотез и критический анализ работ именно этого (общего, по мнению авторов обзора) направления. Материалы Э.И. Григолюка и Г.М. Куликова позволяют не останавливаться на обсуждении конкретных вариантов уравнений слоистых пластин и оболочек, относящихся к рассматриваемому направлению. Большее внимание в настоящей монографии будет уделено лишь одному из таких вариантов, основанному на кинематической модели ломаной линии и получившему (см. [52, 111, 115] и др.) широкую известность и признание — соответствующая система дифференциальных уравнений статики и устойчивости слоистых оболочек сформулирована в параграфе 3.7. Эта система используется при сравнительном анализе результатов расчета слоистых оболочек с привлечением различных уточненных моделей их деформирования.  [c.8]

Получим дифференциальное уравнение устойчивости слоистой цилиндрической оболочки, изготовленной из ортотропного материала косой однозаходной намоткой, т. е. для общего случая анизотропии, когда главные оси анизотропии не совпадают с осями координат. Очевидно, уравнение устойчивости для оболочки, по-лз енной прямой намоткой, будет частным случаем при  [c.220]

Умножая уравнение (738) на оператор у можно получить следующее дифференциальное уравнение устойчивости слоистой цилиндрической оболочки, изготовленной из ортотропного материала косой однозаходной намоткой  [c.223]


В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]

Вернемся к общей системе (2.1.1), (3.2.8), (3.3.3) — (3.3.5) неклассических линеаризованных уравнений устойчивости многослойных тонкостенных оболочек. Эти уравнения позволяют учесть анизотропию деформативных свойств, низкую сдвиговую жесткость всех или части слоев, неоднородность распределения до-критических усилий в отсчетной поверхности, докритические перемещения и деформации и потому пригодны для анализа устойчивости широкого класса слоистых композитных оболочек при разнообразных условиях их закрепления и нагружения. К достоинствам этих уравнений следует отнести также и независимость их порядка и структуры от числа слоев оболочки и строения пакета слоев в целом, что упрощает постановку и исследование задачи устойчивости как задачи на собственные значения с линейной  [c.64]

Итак, система уравнений динамической устойчивости тонкостенных слоистых анизотропных оболочек сформулирована в системе координат, связанной с линиями кривизн поверхности приведения. Статические уравнения устойчивости, основанные на концепции Эйлера о разветвлении форм равновесия, получаются из этих уравнений, если отбросить в них инерционные слагаемые. Для этой системы остаются справедливыми все те предельные переходы и упрощения, какие были указаны ранее для тензорной формы уравнений задачи устойчивости.  [c.74]

В настоящей монографии сравнительному анализу результатов расчета слоистых оболочек и пластин на прочность и устойчивость уделяется значительное внимание. Результаты расчета напряженно-деформированного состояния и критических параметров устойчивости, определенные на основе установленных в параграфах 3.1—3.6 уравнений, сравниваются с результатами, полученными на основе уравнений классической теории, уравнений типа С.П. Тимошенко [43, 118, 121, 226, 265 и др. 1, уравнений, основанных на кинематической модели  [c.81]

Указанные замкнутые системы линеаризованных уравнений статики и устойчивости слоистых упругих тонких пологих (1 + h/R 1) оболочек ниже составлены в системе координат, связанной с линиями кривизны отсчетной поверхности Q. Сведения о вариантах уравнений представлены лишь в том минимальном объеме, в каком они используются в дальнейшем. С полным изложением этих вопросов, включающим в себя уравнения динамики, уравнения нелинейной теории и др., заинтересованный читатель может ознакомиться по цитированным источникам.  [c.82]

Обозначим через Р, Р, . .., Р критические интенсивности внешнего давления, найденные при использовании следующих вариантов уравнений устойчивости Р — при использовании уравнений классической теории оболочек Р — на основе уравнений (3.7.1) — (3.7.8) теории типа Тимошенко Р — при использовании уравнений (3.7.35) — (3.7.41), базирующихся на представлении об однородном напряженно-деформированном состоянии тонкостенного элемента слоистой структуры Р — на основе уравнений (3.7.9) — (3.7.14) модели ломаной линии, модифицированных согласно (3.7.15) — (3.7.17) для того случая, когда поперечные сдвиговые деформации учитываются в заполнителе и не учитываются в несущих слоях Р — на основе уравнений (3.7.18) — (3.7.34), позволяющих учесть не только поперечные сдвиги, но и обжатие нормали Р — на основе уравнений (6.4.1) — (6.4.5).  [c.191]


В ходе расчетов, выполненных [17—19, 21, 23, 24, 30] для слоистых оболочек вращения важных частных классов (цилиндрических, конических и др.) с использованием разработанных в настоящей монографии неклассических уравнений, выявлено, что спектральный радиус матрицы Якоби правой части системы дифференциальных уравнений (7.2.21), (7.2.28) и спектральный радиус матрицы коэффициентов первоначальной системы уравнений изгиба — величины одного порядка. Спектр матрицы Якоби характеризуется большим разбросом и, что существенно, весь лежит в левой комплексной полуплоскости. Такие системы дифференциальных уравнений относятся к классу жестких (в смысле определения [131, 256, 283]). Их устойчивое численное решение классическими явными методами Рунге — Кутта, Адамса и др. [41] возможно лишь при существенном ограничении на шаг интегрирования h  [c.203]

Накопленный опыт [17—19, 21, 23, 24, 30] использования метода инвариантного погружения в задачах статики, устойчивости, свободных колебаний слоистых оболочек вращения с применением разработанных в настоящей монографии неклассических дифференциальных уравнений позволяет заключить, что соответствующие им уравнения (7.2.21), (7.2.28) можно отнести к классу умеренно" жестких. Так, в рассмотренной ниже тестовой задаче прочности длинной круговой цилиндрической панели (требующей введения достаточно густой координатной сетки), дифференциальные уравнения метода инвариантного погружения (7.2.21),  [c.204]

В этом параграфе разработан метод численного решения линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения, объединяющий в себе метод Бубнова — Галеркина для линейных интегральных уравнений Фредгольма второго рода с обобщенной формой метода инвариантного погружения. Изложение метода строится на примере задачи устойчивости и сопровождается указаниями на модификации, необходимые для перехода к задаче  [c.205]

Задача (7.3.12) — краевая задача неклассической теории оболочек, и ее интегрирование требует применения экономичных и эффективных численных методов, учитывающих существенные особенности таких задач — матричную структуру решения и сильную численную неустойчивость неклассических дифференциальных уравнений слоистых оболочек. Этим требованиям в полной мере отвечает разработанный в предыдущем разделе метод инвариантного погружения в его обобщенной форме. Накопленный вычислительный опыт [17—19, 21, 23, 24, 30] позволяет рекомендовать эту модификацию метода к широкому использованию в задачах прочности, устойчивости, динамики оболочек.  [c.208]

Разработанный здесь метод численного определения матричной функции Грина обладает рядом достоинств, позволяющих рекомендовать его к широкому практическому использованию. В нем эффективно преодолевается сильная численная неустойчивость дифференциальных уравнений неклассической теории слоистых оболочек не вызывает никаких затруднений также и переменность коэффициентов этих уравнений. Сам метод матричной функции Грина как метод решения краевых задач механики оболочек имеет известные преимущества перед другими. Так, в нем не возникает проблем, связанных с построением ортогонального координатного базиса, как в методе Бубнова — Галеркина, или с большой размерностью, а часто и плохой обусловленностью алгебраической системы, как в методе конечных разностей. В задачах устойчивости оболочек использование данного метода позволяет легко и естественно учесть такие факторы, как до-критические деформации, неоднородность распределения докритических усилий в отсчетной поверхности оболочки, краевые условия задачи. В то же время число точек разбиения отрезка интегрирования, необходимое для аппроксимации интегрального оператора, относительно невелико, что приводит к алгебраической задаче невысокой размерности.  [c.222]

Уравнения статической устойчивости слоистой упругой ортотропной конической оболочки получим из общих уравнений, составленных в параграфе 3.5. Вновь используем систему координат s, и считаем, что структура армирования слоев не зависит от угловой координаты, а направления осей ортотропии совпадают с направлениями координатных осей. Полагаем также, что оболочка достаточно тонкая, и пренебрегаем во всех уравнениях величинами порядка h/R по сравнению с единицей. Замкнутая система уравнений статической задачи устойчивости включает в себя следующие группы зависимостей (к = 1,2,...,тп — порядковый номер слоя знаком тильды отмечены характеристики основного состояния)  [c.255]

Заменяя в соответствующих уравнениях (например, (1.5.14), (1.5.21), (1.5.27), (1.5.46), (1.14.12), (1.14.30), (1.14.41) и др.) Z, X, Y значениями Z, X, У, получим уравнения локальной устойчивости соответствующей анизотропной слоистой оболочки.  [c.354]

Таким образом, в отличие от предыдущих пунктов настоящего параграфа, будем считать, что основное, докритическое состояние оболочки является моментным. Будем полагать также, что дифференциальные уравнения устойчивости анизотропной слоистой оболочки могут быть получены на основании уравнений теории весьма пологих оболочек (см. гл. I, 14).  [c.363]

На основании приведенных уравнений и расчетных формул могут быть решены задачи устойчивости моментного состояния различных типов анизотропных слоистых оболочек.  [c.366]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]


В этом параграфе исследуется устойчивость равновесия слоистой композитной цилиндрической оболочки при внешнем давлении. Рассматривается ортотропная оболочка, собранная из т слоев, структура армирования которых не зависит от угловой и осевой координат, а направления осей ортотропии совпадают с направлениями осей координатной системы х, z (ее описание дано в параграфе 6.1). Примем также, что интенсивность внешнего давления и условия закрепления краев оболочки не зависят от угловой координаты (р. Докритическое напряженно-деформированное состояние оболочки определим в результате интегрирования линеаризованных уравнений осесимметричного изгиба (6.2.1) — (6.2.5), (4.1.4) при надлежащих краевых условиях. В основу анализа устойчивости моментного равновесного состояния оболочки положим неклассические линеаризованные уравнения статической устойчивости, которые получим из уравнений (3.5.1),  [c.183]

Уравнения (4.101), (4.102) позволяют определять критические комбинации осевых и боковых нагрузок, а также формы потери устойчивости для слоистых цилиндрических оболочек общего вида.  [c.398]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]

Итак, установлена замкнутая система линейных однородных уравнений устойчивости слоистых композитных оболочек. Записанная в вариациях обобщенных перемещений система состоит из пяти дифференциальных уравнений в частных производных с двумя независимыми переменными j S относительно пяти искомых функций и , и . И", TTj. Ее порядок от числа слоев оболочки не зависит и равен 12, что соответствует количеству задаваемых для нее краевых условий (3.3.6). Зависимость коффициентов этих уравнений от параметра внешних нагрузок проявляется через характеристики основного состояния (перемещения, деформации, усилия) и в общем случае нелинейна. Задача заключается в определении таких значений этого параметра, при которых линейная однородная система уравнений устойчивости, подчиненная надлежащим однородным краевым условиям, допускает нетривиальное решение. Этими значениями параметра нагрузок определяются критические точки, которые, согласно существующей классификации [45, 51 ], могут быть двух типов — точки бифуркации и предельные точки. При переходе через точку бифуркации может теряться устойчивость по типу разветвления форм равновесия. Переходу через предельную точку соответствует скачкообразный переход от одной равновесой формы к другой [45, 51 ].  [c.61]

Зависимости (2.1.1), (3.2.8), (3.3.4), (3.3.7), (3.3.8) составляют полную систему уравнений задачи устойчивости, составленную для того случая, когда пренебрега-ется как нелинейностью основного равновесного состояния, так и докритическими деформациями. Для оболочек тонкостенных пологих и для теряющих устойчивость с образованием большого числа выпучин, в пределах каждой из которых оболочку можно рассматривать как пологую, эти уравнения допускают дальнейшие упрощения. В этом случае можно отождествить метрику на поверхности приведения с евклидовой метрикой (Л = = 1), принять приближенные равенства (3.2.21), отождествить компоненты тензоров поверхности с их физическими составляющими, а оператор ковариантного дифференцирования с оператором частного дифференцирования д . Соответствующая данному приближению система линейных дифференциальных уравнений устойчивости слоистых пологих оболочек включает в себя следующие группы зависимостей  [c.62]

Завершая обсуждение возможных упрощений уравнений устойчивости упругих слоистых композитных оболочек, отметим еще предельные переходы, аналогичные тем, которые были указаны в задаче изгиба. Так, в результате предельного перехода (3.2.20) получаются классические уравнения устойчивости, базирующиеся на гипотезе о недсформируемых нормалях. Далее, полагая в уравнениях устойчивости компоненты тензора кривизны равными нулю, придем к неклассическим уравнениям устойчивости слоистых пластин. Наконец, как и в задаче изгиба, получаются уравнения устойчивости ортотропной многослойной оболочки, податливой на поперечные сдвиги лишь в одном направлении орто-тропии (армирования).  [c.64]

Результаты эксперимента сравнивались с расчетом. Критическое внешнее давление определялось из уравнений устойчивости (см. гл. 2), полученных для конической ортотропной оболочки, неоднородной по тол1Щ1не. В случае слоистой оболочки формулы для жестокостей имеют вид  [c.363]

Нарусберг В. Л. О структурных уравнениях рационально армированных слоистых оболочек, работающих на устойчивость // Механика конструкций из композиционных материалов. — Новосибирск Наука, СО, 1984. — С. 186—189.  [c.273]

В шестой главе рассматриваются слоистые цилиндрические оболочки. Замкнутая система дифференциальных уравнений, описывающая в линейном приближении процесс деформирования слоистой упругой ортотропной композитной цилиндрической оболочки, получена из общей системы и использована при исследовании осесимметричного изгиба оболочки, нагруженной равномерно распределенным внутренним давлением. Выполнен параметрический анализ влияния поперечных сдвигов на интегральные (прогибы, усилия, моменты) и локальные (нагрузки начального разрушения) характеристики напряженно-деформирован-ного состояния. На примере этой задачи исследована зависимость решения от функционального параметра /(z) и показано, что в большинстве практически важных случаев этот параметр можно принять соответствующим квадратичной зависимости сдвиговых поперечных напряжений от нормальной координаты. В параграфе 6.4 дано решение задачи об устойчивости цилиндрической многослойной оболочки, нагруженной внешним давлением. Эта задача рассмотрена как на основе разработанных в настоящей монографии уравнений, так и на основе других вариантов уравнений устойчивости, приведенных в третьей ее главе. Выполнен параметрический анализ полученных решений, что позволило выявить и оценить влияние поперечных сдвиговых деформаций, обжатия нормали, кинематической неоднородности, моментности основного равновесного состояния на критические параметры устойчивости.  [c.14]


Во-первых, общие уравнения нелинейной теории упругости используются для обоснованного вывода уравнений устойчивости для тонких и тонкостенных тел. Работы этого направления (В. В. Новожилов, 1940, 1948 В. В. Болотин, 1956, 1965 А. И. Лурье, 1966, и др.) уже обсуждались в 3. Во-вторых, решения задач, полученные на основе теории упругости, могут быть использованы для оценки точности и установления границ применения известных приближенных решений. К этому направлению относятся работы Л. С. Лейбензона (1917) и А. Ю. Ишлинского (1954). Заметим, что в этих работах в качестве уравнений для описания форм равновесия, смежных с невозмущенной формой, предлагалось использовать классические уравнения теории упругости внешние силы входили при этом только в возмущенные граничные условия. Этот подход обсуждался недавно А. Н. Гузем (1967). В-третьих, необходимость в привлечении уравнений теории упругости возникает в задачах об устойчивости пластин и оболочек, находящихся в контакте с упругим материалом пониженной жесткости. Применительно к слоистым пластинам с мягким наполнителем этот подход развивался А. П. Вороновичем (1948), В. Н. Москаленко (1964) и другими. Устойчивость цилиндрических оболочек с мягким упругим ядром рассматривалась А. П. Варваком (1966). Типичным для этих задач является применение теории пластин и оболочек к несущим слоям и трехмерной теории упругости — к заполнителю.  [c.346]

Обш ая система дифференциальных уравнений устойчивости анизотропных слоистых оболочек достаточно сложна и громоздка и не всегда может быть использована для решения многочисленных эадач, представляю1цих интерес с точки зрения приложений. Однако для выяснения многих вопросов теории и для решения конкретных задач устойчивости обш ая система уравнений может быть существенно упрощена.  [c.354]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Рассмотрим задачу об устойчивости равновесия упругой слоистой анизотропной оболочки вращения, нагруженной осесимметричной системой внешних сил, интенсивности которых пропорциональны одному параметру. Докритическое равновесное состояние оболочки определяем на основе линеаризованных уравнений статики, а его устойчивость исследуем в рамках статической концепции Эйлера о разветвлении фop равновесия, позволяющей трактовать (см. параграф 3.3) задачу устойчивости как линейную краевую задачу на собственные значения для системы дифференциальных уравнений с частными производными. Решение этой задачи строим в форме тригонометрических рядов Фурье по угловой координате (см. параграф 3.6) с коэффициентами, зависящими от меридиональной координаты. Отделяя угловую координату и вводя 2х-мерный вектор j>(x) вариаций безразмерных кинематических и силовых характеристик напряженно-деформированного состояния оболочки (см. параграф 3.6), приходим к линейной краеюй задаче на собственные значения для системы обыкновенных дифференциальных уравнений, которую запишем в векторной форме  [c.205]

Рассмотрим задачу об устойчивости ортотро1пной слоистой цилиндрической оболочки при осевом сжатии. Устойчивость оболочек из стеклопластика исследовалась на основе классических уравнений теории оболочек в работах [9, 24, 56, 62, 115, 132, 135] и на основе уравнений, при-  [c.106]


Смотреть страницы где упоминается термин Уравнения устойчивости слоистых оболочек : [c.67]    [c.219]    [c.223]    [c.6]    [c.10]    [c.94]    [c.161]    [c.225]   
Смотреть главы в:

Многослойные анизотропные оболочки и пластины Изгиб,устойчивость,колебания  -> Уравнения устойчивости слоистых оболочек



ПОИСК



Оболочка Устойчивость

Оболочка слоистая

Оболочки уравнения

Уравнение устойчивости

Уравнения устойчивости оболочек

Устойчивость слоистых оболочек



© 2025 Mash-xxl.info Реклама на сайте