ПОИСК Статьи Чертежи Таблицы Уравнения устойчивости слоистых оболочек из "Многослойные анизотропные оболочки и пластины Изгиб,устойчивость,колебания " Задача об устойчивости равновесия тонкостенных упругих систем — одна из важнейших в механике твердого деформируемого тела. Актуальность этой задачи, выросшей из запросов практики, сохраняется и возрастает и в настоящее время, в условиях появления новых высокопрочных композитных материалов и расширения технологических возможностей создания рациональных облегченных тонкостенных конструкций из них. По мере их облегчения проблеме устойчивости должно уделяться все большее внимание, поскольку во многих случаях к исчерпанию несущей способности высокопрочных композитных тонкостенных элементов конструкций приводит именно их выпучивание, а не превышение внутренними напряжениями предела прочности материала. [c.59] История вопроса, насыщенная дискуссиями и порой драматическая, восходит, конечно, к классическим трудам Л. Эйлера [331 ] о выпучивании упругих сжатых стержней. В фундаментальных монографиях и обзорных работах [4, 46, 51, 52, 60, 85, 103, 104, 116, 130, 134, 189, 194, 204, 206, 222, 240,265, 300, 311, 321] можно найти сведения об эвлюции взглядов на проблему устойчивости, обсуждение различных подходов к постановке задачи — статического, энергетического, метода неидеальностей, динамического метода и областей их применимости, сопоставление экспериментальных и расчетных теоретических результатов, обсуждение путей дальнейшего развития теории и т.д. Следует отметить, что большинство глубоких результатов в задаче устойчивости относится к однородным изотропным оболочкам и получено в рамках гипотезы недеформируемых нормалей. Несмотря на значительные достижения [52, 60, 117, 265 и др. ], задача устойчивости слоистых анизотропных композитных оболочек с ограниченной поперечной сдвиговой жесткостью разработана с меньшей полнотой и требует дальнейших исследований. [c.59] на основе концепции Эйлера о разветвлении форм равновесия и выведенных в предыдущих параграфах нелинейных уравнениях изгиба, устанавливаются линеаризованные дифференциальные уравнения устойчивости многослойных композитных анизотропных оболочек. Подробное изложение этой концепции и методики получения пространственных линеаризованных уравнений устойчивости из нелинейных уравнений теории упругости приведено в монографии [206 ]. Для однородных изотропных абсолютно жестких на поперечные сдвиги и обжатие оболочек эти вопросы достаточно полно рассмотрены, например, в монографиях [85, 104, 189], а для многослойных анизотропных оболочек с ограниченной поперечной сдвиговой жесткостью — в монографиях [52, 60, 116]. [c.59] Уравнения (3.3.5) и все последующие соотношения составлены для случая, коща внешняя нагрузка, действующая на оболочку, консервативна. [c.60] установлена замкнутая система линейных однородных уравнений устойчивости слоистых композитных оболочек. Записанная в вариациях обобщенных перемещений система состоит из пяти дифференциальных уравнений в частных производных с двумя независимыми переменными j S относительно пяти искомых функций и , и . И , TTj. Ее порядок от числа слоев оболочки не зависит и равен 12, что соответствует количеству задаваемых для нее краевых условий (3.3.6). Зависимость коффициентов этих уравнений от параметра внешних нагрузок проявляется через характеристики основного состояния (перемещения, деформации, усилия) и в общем случае нелинейна. Задача заключается в определении таких значений этого параметра, при которых линейная однородная система уравнений устойчивости, подчиненная надлежащим однородным краевым условиям, допускает нетривиальное решение. Этими значениями параметра нагрузок определяются критические точки, которые, согласно существующей классификации [45, 51 ], могут быть двух типов — точки бифуркации и предельные точки. При переходе через точку бифуркации может теряться устойчивость по типу разветвления форм равновесия. Переходу через предельную точку соответствует скачкообразный переход от одной равновесой формы к другой [45, 51 ]. [c.61] Завершая обсуждение возможных упрощений уравнений устойчивости упругих слоистых композитных оболочек, отметим еще предельные переходы, аналогичные тем, которые были указаны в задаче изгиба. Так, в результате предельного перехода (3.2.20) получаются классические уравнения устойчивости, базирующиеся на гипотезе о недсформируемых нормалях. Далее, полагая в уравнениях устойчивости компоненты тензора кривизны равными нулю, придем к неклассическим уравнениям устойчивости слоистых пластин. Наконец, как и в задаче изгиба, получаются уравнения устойчивости ортотропной многослойной оболочки, податливой на поперечные сдвиги лишь в одном направлении орто-тропии (армирования). [c.64] Вопросы численного решения уравнений (3.3.15), (3.3.16) разработаны и представлены в литературе достаточно полно. Укажем, например, на монографии [65, 143, 178, 185, 211, 244], в которых аппарат функционального анализа и теории операторов составил основу исследования и строгого теоретического обоснования таких эффективных численных методов решения уравнения (3.3.15), как метод В. Ритца, И.Г. Бубнова—Б.Г. Галеркина, методы конечных элементов, конечных разностей и др. Методы, ориентированные на задачи устойчивости оболочек, описаны в [104]. Специальные вопросы численного решения краевых задач устойчивости анизотропных оболочек вращения обсуждаются в [19, 20, 144, 289]. Этим вопросам уделено значительное внимание и в настоящей монографии. [c.65] В заключение отметим, что рассматриваемые здесь уравнения пригодны для анализа устойчивости при кратковременном нагружении. При расчетах на устойчивость тонкостенных композитных элементов конструкций, подверженных длительному воздействию нагрузок, необходимо привлекать критерии устойчивости, позволяющие учитывать вязкоупругие эффекты. Обсуждение таких критериев, соответствующих расчетных схем и результатов, полученных на их основе, можно найти, например, в [176, 265]. [c.65] Вернуться к основной статье