Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение МКЭ для решения задач нелинейной теории упругости

ПРИМЕНЕНИЕ МКЭ ДЛЯ РЕШЕНИЯ ЗАДАЧ НЕЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ  [c.65]

Развитие техники за последние десятилетия связано с применением новых материалов и широким использованием в конструкциях различного рода гибких элементов и вызвало необходимость решения задач, которые являются предметом нелинейной теории упругости. Эти задачи могут быть либо геометрически нелинейными (когда тела не обладают достаточной жесткостью, например гибкие стержни), либо физически нелинейными (когда тела не подчиняются закону Гука), а также геометрически и физически нелинейными (когда детали изготовлены из резины или некоторых пластмасс). Во всех этих задачах непременными свойствами модели являются сплошность и идеальная упругость, а возможность других свойств, конкретизирующих ее, определяется особенностями абстрагируемого твердого тела. Нелинейная теория упругости, таким образом, имеет еще более общий характер и решает весьма широкий круг задач, постоянно и неизбежно выдвигаемых современной техникой. Это не принижает фундаментального значения линейной теории упругости и не обязывает получать зависимости последней как частный случай значительно более сложных соотношений нелинейной теории упругости. Напротив, познания теории упругости должны начинаться с изучения исторически первой и наиболее разработанной линейной теории упругости, которая в этом отношении должна носить как бы пропедевтический характер.  [c.5]


Применение методики Райса к исследованию решений некоторых нелинейных задач плоской теории упругости в окрестностях угловых точек  [c.70]

Отметим, что задачи теории многократного наложения больших упругих и вязкоупругих деформаций, вероятно, могут быть решены любыми методами, которые применимы к решению обычных задач нелинейной упругости или вязкоупругости при конечных деформациях, в том числе и методом конечных элементов (МКЭ), применение которого к решению задач нелинейной упругости при больших деформациях рассмотрено, например, в [67]. Однако при решении задач теории наложения больших деформаций с помощью МКЭ потребуется учесть особенности этих задач, которые упомянуты в конце предыдущей главы.  [c.46]

Метод последовательных приближений впервые был применен к задачам нелинейной упругости при конечных деформациях в работе Синьорини [130]. Дальнейшее его применение к этим задачам рассмотрено, например, в [17, 18, 32, 78, 103]. Решение задач теории наложения больших деформаций этим методом приведено в [29, 50, 51, 53, 57, 122]. Сущность метода применительно к задачам теории наложения больших деформаций может быть описана следующим образом. В качестве начального приближения выбирается решение линейной задачи, соответствующей исходной нелинейной задаче. Обозначим вектор перемещений, соответствующий этому решению, через Очевидно,  [c.49]

В теории Гриффитса — Ирвина предполагается, что трещина распространяется линейно. Существуют примеры невыполнения этого требования у реальных материалов, как изотропных [28], так и анизотропных [20]. Си [7] показал, что применение линейной упругой механики разрушения к однофазным материалам, в которых трещина распространяется нелинейно (это часто бывает при смешанных видах нагружения), может привести к большим ошибкам. Среди перечисленных далее теорий в некоторых из них рассматриваются только определенное направление роста трещины и напряженное состояние. Различные подходы механики разрушения можно классифицировать в соответствии с возможностью их прямого применения для решения задач анализа слоистых композитов с трещинами.  [c.235]

Для реализации метода граничных элементов необходима матрица фундаментальных решений исходной системы уравнений. В линейных задачах теории упругости и теории пластин фундаментальные решения имеют простой вид, и поэтому метод здесь получил широкое распространение. Для пологих оболочек матрица фундаментальных решений определяется сложными громоздкими выражениями, а для пологой сферической оболочки выражается через специальные функции. Поэтому исследований по решению задач теории пологих оболочек методом граничных элементов мало. В связи с этим актуальной темой исследования является разработка методов граничных интегральных уравнений для решения линейных и нелинейных задач теории пологих оболочек, основанных на применении фундаментальных решений, которые определяются простыми аналитическими выражениями.  [c.4]


Если вариационные постановки для основных краевых задач математической физики и теории упругости известны давно, то для задач с односторонними ограничениями сформулированы только в последнее время. Одной из первых на эту тему является работа [379], в которой показано, что контактная задача теории упругости с односторонними ограничениями (задача Синьорини) сводится к вариационному неравенству. В дальнейшем вариационные неравенства и их приложения в механике и физике рассматривались в [26, 71, 85, 115, 167, 216, 283, 376, 381, 486 и др.]. В частности, статические и динамические контактные задачи теории упругости с трением вариационными методами рассматривались в работах [185—189, 326], контактные задачи для тел с трещинами — в [34, 75, 86, 164, 165, 175, 271, 365, 575], линейные и нелинейные контактные задачи теории оболочек — в [229, 310], а граничные вариационные неравенства применительно к решению контактных задач — в [138, 366—368, 432, 510, 534, 540]. Алгоритмы решения вариационных задач с ограничениями в виде неравенств, их теоретическое обоснование и вопросы численной реализации рассмотрены в [72, 111, 338, 420, 475 и др.]. Подробный обзор работ по применению вариационных неравенств в задачах механики твердого деформируемого тела дан в [365].  [c.82]

Первые две задачи, не относящиеся к области теплообмена, позволяют получить более или менее общее представление о понятии коэффициента. Задача 1 является по существу математическим упражнением в области сопротивления материалов. Она позволяет продемонстрировать решение задач с использованием коэффициентов и без них и показывает, какая получается путаница в том случае, если коэффициент напряжения (модуль упругости Е) применяется в "неупругой" области (т.е. в области нелинейной пластической деформации) подобно тому, как в старой теории теплопередачи коэффициент теплоотдачи применяется в нелинейных задачах. В задаче 2 рассматривается общий процесс переноса и показано, как применение коэффициентов вносит искусственные трудности при анализе нелинейных процессов переноса. В задаче 3 рассматривается, по-видимому, самый простейший нелинейный процесс теплообмена - свободная конвекция на поверхности раздела. Результаты анализа показывают, что вследствие применения коэффициента теплоотдачи приходится использовать итерационные методы для решения многих элементар-ных задач свободной конвекции, которые в новой теории теплопередачи решаются прямым путем.  [c.26]

Данные модели, однако, с чисто механической точки зрения внутренне не противоречивы и обладают одним немаловажным достоинством они позволяют найти соответствующие им точные решения задач о трещине. При удалении от края трещины поля напряжений и деформаций, отвечающие этим двум моделям (и соответственно - линейной теории упругости), сближаются и, если деформации и повороты вдали от трещины малы, становятся неразличимыми. Это дает основания полагать, что влияние геометрической нелинейности в данных задачах носит локальный характер и что там, где она не проявляется, результаты линейной теории правильны. Область, вне которой влияние геометрической нелинейности несущественно, для обычных жестких материалов оказывается достаточно малой, что оправдывает применение геометрически линейной теории не только для упругого, но и для упругопластического тела. При этом зависимости для напряжений и перемещений у края трещины в линейно-упругом теле следует  [c.68]

Для гидравлических следящих приводов характерны значительные массы подвижных частей и существенная упругость кинематических звеньев, определяемая сжимаемостью рабочей масляной среды. Поэтому движение этих приводов описывается дифференциальными уравнениями третьего и выше порядков. Точному математическому решению поддается лишь небольшое количество нелинейных задач теории автоматического регулирования [3], причем для нелинейных дифференциальных уравнений выше второго порядка, даже если решение и получено, оно обычно оказывается слишком сложным для применения в инженерных расчетах. Поэтому целесообразными для исследования устойчивости гидравлических следящих приводов представляются приближенные методы и, в частности, метод гармонической линеаризации нелинейностей, предложенный в известных работах Н. М. Крылова и Н. Н. Боголюбова [65] и развитый в  [c.107]


Одно из наиболее перспективных направлений связано с применением методов теории вероятностей и математической статистики. Необходимость учета континуального характера упругих систем приводит к рассмотрению стохастических краевых задач. Методы решения нелинейных задач такого рода разработаны еш,е весьма слабо. До сих пор большая часть задач решается путем приведения упругой системы к эквивалентной в некотором смысле системе с конечным числом степеней свободы. Дальнейшее развитие в данной области требует совершенствования математических методов.  [c.363]

Здесь и в 17, 18 формулируются вариационные принципы нелинейной теории упругости. Доказывается, что уравнения равновесия и краевые условия на поверхности О тела в его актуальной конфигурации могут быть получены, как следствие этих формулировок. Вместе с тем ими подсказываются возможности применения прямых методов типа Ритца, Бубнова — Галер-кина и их видоизменения, предложенного Л. В. Канторовичем, к приблийсенному решению задач нелинейной теории упругости.  [c.138]

Во-первых, общие уравнения нелинейной теории упругости используются для обоснованного вывода уравнений устойчивости для тонких и тонкостенных тел. Работы этого направления (В. В. Новожилов, 1940, 1948 В. В. Болотин, 1956, 1965 А. И. Лурье, 1966, и др.) уже обсуждались в 3. Во-вторых, решения задач, полученные на основе теории упругости, могут быть использованы для оценки точности и установления границ применения известных приближенных решений. К этому направлению относятся работы Л. С. Лейбензона (1917) и А. Ю. Ишлинского (1954). Заметим, что в этих работах в качестве уравнений для описания форм равновесия, смежных с невозмущенной формой, предлагалось использовать классические уравнения теории упругости внешние силы входили при этом только в возмущенные граничные условия. Этот подход обсуждался недавно А. Н. Гузем (1967). В-третьих, необходимость в привлечении уравнений теории упругости возникает в задачах об устойчивости пластин и оболочек, находящихся в контакте с упругим материалом пониженной жесткости. Применительно к слоистым пластинам с мягким наполнителем этот подход развивался А. П. Вороновичем (1948), В. Н. Москаленко (1964) и другими. Устойчивость цилиндрических оболочек с мягким упругим ядром рассматривалась А. П. Варваком (1966). Типичным для этих задач является применение теории пластин и оболочек к несущим слоям и трехмерной теории упругости — к заполнителю.  [c.346]

При решении задачи теории пластичности можно использовать те же способы, что и в теории упругости решение в напряжениях, в перемещениях и смешанный способ. Точно так же возможно применение методов теории упругости, а именно прямого, обратного и полуобрат-ного. Однако решение задачи теории пластичности имеет свои специфические особенности вследствие нелинейности. Эффективным является приближенный метод, предложенный А. А. Ильюшиным, — метод упругих решений (разновидность метода последовательных приближений).  [c.229]

Для инженерных расчетов прочности в настоящее время находят применение решения с использованием деформационной теории. В рассмотрение вводится нелинейная зависимость между напряжениями и деформациями (физически нелинейная задача), диаграммы деформирования конструкцио11иых материалов трактуются на основе изохронных (учитывающих реологические эффекты) и изоцик-лических (отражающих изменение сопротивления циклическому деформированию за пределами упругости) кривых.  [c.230]

Системы уравнений, которые должны здесь рассматриваться, зачастую нелинейны (уравнения газовой динамики, гидродинамики, теории пластичности). Это требует при менения специальных приемов для расчета различных обобпденных решений (решений с разрывами разного типа), применения специальных разностных схем. Для прочност ных задач, опираюш ихся на уравнения теории упругости, в этом курсе должны быть рассмотрены широко используемые в настоящее время метод конечных элементов и метод граничных элементов. В принципе этот курс может быть разбит на две части гидродинамическую и прочностную.  [c.26]

Первые крупные исследования по общей теории упругих оболочек созревают к началу сороковых годов. Освоению и анализу теории оболочек способствовало применение ведущими учеными страны тензорной символики для записи основных соотношений теории. Уравнения совместности деформации впервые вывел А, Л. Гольденвейзер (1939) А, И. Лурье (1940) и А. Л. Гольденвейзер (1940) ввели в теорию оболочек функции напряжения, через которые определяются усилия и моменты, тождественно удовлетворяющие уравнениям равновесия. А, Н. Кильчевский (1940) указал способы построения теории оболочек и решения ее задач на основе теоремы о взаимности. Уравнения в перемещениях геометрически нелинейной теории были опубликованы X. М. Муштари (1939) — изложенный им вариант теории является обобщением упрощенной нелинейной теории пластинок Кармана на оболочки произвольного очертания.  [c.229]

Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]


Производных Фреше, теорему о неявной функции и другие теоремы из функционального анализа, многие из которых приведены с полными доказательствами. Во второй главе дан вывод основных уравнений и граничных условий статической теории упругости. В последующих главах этой части обсуждается структура системы уравнений теории упругости, её зависимость от свойств упругого материала. Часть В под названием Математические методы трёхмерной теории упругости посвящена в основном доказательству теорем существования решений краевых задач нелинейной системы теории упругости. В этой части две главы. В первой даны доказательства теорем существования, основанные на применении теоремы о неявной функции, получены оценки отклонения решения от соответствующего решения линейной задачи, доказана сходимость метода приращений. Во второй главе теоремы существования установлены вариационным методом, на основе минимизации энергии, приведены доказательства замечательных теорем Болла о существовании решений.  [c.6]

В дальнейшем исследование в рамках линейной (при малых прогибах) теории условий, при которых конструкция или элеменг конструкции с идеальными формой и упругостью могут находиться в состоянии нейтрального равновесия при нагрузках, заставляющих их выпучиваться, будем называть классической задачей устойчивости. До сравнительно недавнего времени теоретические исследования задач устойчивости были ограничены такими идеализированными решениями. Инженеры, которым при-ходилгось использовать такие элементы в проектируемых ими машинах и конструкциях, давно уже обнаружили, что зти решения иногда имеют малую, связь с действительным поведением конструкций. Такие исследования в рамках классической устойчивости дают удовлетворительные результаты для очень тонких сжатых стержней, но из-за ограничений на упругое поведение реальных материалов наибольшее применение находят результаты,, полученные эмпирическим путем. Когда классические теории устойчивости стали применяться для более сложных элементов было найдёно, что нелинейное поведение — только один из случаев серьезного расхождения 1й(ежду теориями и экспериментами. Например, классическая теория устойчивости предсказывает во много раз большую, чем действительная, способность к сопротивлению очень тонких цилиндрических оболочек при осевоМ сжатии с другой стороны, классическая теория предсказывает только часть действительной предельной прочности тонких шарнирно опертых или защемленных по краям пластин при сжатии-или сдвиге (хотя эта теория предсказывает, когда начнется выпучивание). Эти расхождения становятся тем большими, чеш  [c.81]

Сначала на примере неоднородного стержня показывается техника применения методики осреднения к нелинейным краевым задачам. С помощью этой методики задача о стержне решается точно. Затем подробно описывается решение квазистатической задачи неоднородной и анизотропной теории пластичности. Рассматриваются теория эффективного модуля и теория нулевого приближения. Большое место в главе уделяется построению теории малых упруго-пластических деформаций для анизотропной однородной среды. Для такой среды доказываются теорема единственности решения квазистатической задачи в перемещениях и напряжениях, теоремы о минимуме лагранжиана и максимума кастильяниана, теоремы о простом нагружении. Описывается схема экспериментов, необходимых для определения материальных функций исследуемой теории. Показано, как исходя из теории малых упруго-пластических деформаций А. А. Ильюшина для изотропной среды получить методом осреднения соотношения анизотропной теории пластичности.  [c.219]

Применение функционала Лагранжа для решения численными методами краевых задач теории композитных оболочек при изменении их параметров в широких пределах [1, 2] приводит к эффектам сдвигового и мембранного вырождения. Такие явления получили название запирание . Они проявляются в замедленной сходимости численных методов, вследствие чего достоверность получаемых решений тяжело оценить. Способы преодоления таких нежелательных эффектов являются актуальными и к настоящему времени, в особенности по отношению к композитным оболочкам, поскольку увеличивается количество параметров, которые могут привести к таким эффектам. Для их преодоления были предложены проблемно-ориентированные смешанные функционалы [3, 4] и сформулированы варианты теорий нелинейно-упругих ортотропных тонких и нетонких оболочек в зависимости от соотношений между параметрами их композитных материалов (КМ). С их использованием был решен ряд тестовых [5] и новых [6, 7] задач статики оболочек из нелинейно-упругих КМ. Ниже дана общая характеристика предложенных функционалов и вариантов теории, а также приведены наиболее яркие демонстрационные примеры расчетов.  [c.531]

Первые инвариантные интегралы применительно к упругим телам появляются в [423], а как инструмент исследования задач механики разрушения — в работе [396], причем в работах [400, 403, 452, 454] дана общая формулировка инвариантных интегралов, учитывающая нелинейные и динамические эффекты, а также наличие физических полей различной природы (температурных, электромагнитных и др.). Впоследствии не зависящйе от пути интегрирования интегралы используются в работах многих авторов при решении различных задач механики разрушения [321, 435—437, 502,, 530, 545, 554 и др.]. В работах [62, 294, 296, 399—402, 444, 453] изложены вопросы теории и применение инвариантных интегралов в различных разделах механики разрушения.  [c.16]

При постановке задачи о колебаниях весов с присоединенной диафрагмой с учетом энергии рассеяния в последней рассматривают в определенном отношении идеализированную систему, в которой нет никаких других потерь, кроме потерь энергии на гистерезис. Такая идеализация является корректной, так как экспериментально устаНевлено, что доля других потерь при колебаниях коромысловых весов незначительна. Д1Я решения этой задачи может быть применен асимптотический метод H.H. Боголюбова, который получил свое дальнейшее развитие в работе Г.С. Писаренко. Для узких гистерезисных петель, характерных для пружинных весов, за нулевое приближение принимается решение вполне упругой задачи, а эффекты нелинейности проявляются лишь в высших приближениях теории возмущений. Обычно ограничиваются первым приближением. Для коромысловых весов с присоединенной диафрагмой характерно появление широких гистерезисных петель, возникающих вследствие сравнительно больших неупругих сил. При применении асимптотического метода для этого случая нельзя ограничиться первым 172  [c.172]


Смотреть страницы где упоминается термин Применение МКЭ для решения задач нелинейной теории упругости : [c.261]    [c.260]    [c.132]    [c.404]    [c.220]   
Смотреть главы в:

Метод конечных элементов в проектировании транспортных сооружений  -> Применение МКЭ для решения задач нелинейной теории упругости



ПОИСК



Задача упругости

Задачи теории упругости

К упругих решений

Нелинейная теория

Нелинейная теория упругости

Нелинейные задачи

Применение к задачам теории упругости

Решение задачи упругости

Решение нелинейных задач

Теории Применение

Теория упругости

Упругие Применение для решения задач

Упругость Теория — см Теория упругости

Упругость нелинейная



© 2025 Mash-xxl.info Реклама на сайте