Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформирование циклическое

На рис. 5.20 представлены гистерезисные петли для всех трех типов материалов, деформированных циклически до насыщения при пл = 5.  [c.220]

Для описания диаграмм деформирования циклически анизотропных материалов обобщенный принцип Мазинга может быть преобразован к виду  [c.82]

Все виды испытаний должны сопровождаться измерениями и автоматической записью напряжений, деформаций, температур во времени и диаграмм деформирования циклического неизотермического нагружения.  [c.248]


Диаграммы циклического деформирования можно получить пересчетом из диаграммы статического деформирования. Циклические пластические деформации при нормальных или повышенных температурах, когда деформацией ползучести можно пренебречь, определяют из условий подобия  [c.81]

Рассмотренная модель нелинейной среды для неизотермического циклического деформирования с учетом положенных в ее основу упрощающих гипотез описывает закономерности упругопластического деформирования циклически стабильной среды. Эта модель в сочетании с соотношениями деформационной теории пластичности достаточно корректна и, следовательно, применима для проектных расчетов элементов конструкций, работающих в условиях малоциклового термомеханического нагружения, при температурах, при которых временные эффекты не проявляются достаточно интенсивно.  [c.87]

При деформировании циклически разупрочняющихся Щли стабильных металлов с заданной амплитудой нагрузки (мягкое нагружение) в большинстве случаев имеет место накопление пластических деформаций, приводящее либо к квазистатическому разрушению (с образованием шейки), когда сужение в шейке ф практически равно сужению при однократном разрыве, либо  [c.8]

Основное внимание в справочнике уделено характеристикам неупругого деформирования и разрушения материалов при кратковременном, длительном и циклическом нагружениях в условиях нормальных и повышенных температур После традиционных сведений о химическом составе, общепринятых характеристиках (Оо2, Og, 5, /) и их нормируемых минимальных значениях дается по возможности подробная информация об истинных (действительных) диаграммах деформирования, циклических кривых, параметрах длительной и малоцикловой прочности При этом широко используется аппроксимация опытных данных приводятся параметры степенной аппроксимации действительной кривой деформирования, циклической кривой, кривых малоцикловой усталости  [c.257]

Рис. 2. Диаграммы деформирования циклически упрочняющегося материала при нагружении Рис. 2. <a href="/info/28734">Диаграммы деформирования циклически</a> упрочняющегося материала при нагружении

Деформирование циклической нагрузкой даже хорошо уплотненных и упрочненных грунтов, когда большая часть или даже почти вс деформация обратима, всегда связано с затратой работы, которая при этом рассеивается.  [c.40]

МЕТОД РАСЧЕТА НДС ПРИ КВАЗИСТАТИЧЕСКОМ (МОНОТОННОМ И ЦИКЛИЧЕСКОМ) НАГРУЖЕНИИ В СЛУЧАЕ УПРУГОПЛАСТИЧЕСКОГО, ВЯЗКОУПРУГОГО И УПРУГОВЯЗКОПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ МАТЕРИАЛА  [c.12]

Теории пластичности разделяются на группы. Теории одной группы, называемые деформационными, пренебрегают тем, что в общем случае нет однозначной связи между напряжениями и деформациями в пластической области, и используют конечные зависимости между компонентами напряжений и деформаций [94]. Они могут успешно применяться в пределах, ограниченных условиями простого нагружения, при котором внешние силы растут пропорционально одному параметру, например времени. Теории другой группы не пренебрегают неоднозначностью зависимости напряжений и деформаций, уравнения в них формируются в дифференциальном виде, позволяющем поэтапно прослеживать сложное (например, циклическое) деформирование материала. Эти теории называют теориями пластического течения [94, 124].  [c.13]

По всей видимости, снижение е/ в зависимости от hjs можно объяснить следующей причиной. Следствием импульсного нагружения являются последующие свободные колебания сварного соединения. Очевидно, что в зоне сопряжения шва с основным металлом эти колебания за счет концентрации напряжений и деформаций могут приводить к циклическому знакопеременному упругопластическому деформированию материала. Разрушение материала в данном случае может быть связано с накоплением усталостных повреждений. Ясно, что критическая деформация, по сути являющаяся остаточной деформацией после импульсного нагружения, будет меньше, чем критическая деформация при монотонном квазистатическом нагружении. Увеличение относительной высоты усиления hjs приводит к росту инерционных сил, за счет которых в зависимости от схемы нагружения растет амплитуда и(или) количество циклов свободных колебаний сварного соединения. Роль усталостного повреждения в этом случае увеличивается, что приводит к снижению критической деформации при динамическом нагружении.  [c.45]

В случае импульсного нагружения элемента конструкции за счет волновых процессов в зонах концентрации напряжений может реализовываться циклическое упругопластическое деформирование. Данный эффект во многих случаях является причиной уменьшения критической деформации по сравнению с идентичным параметром при статическом нагружении.  [c.49]

В настоящем разделе рассмотрены результаты опытов по определению критического напряжения хрупкого разрушения 5с в предварительно статически и циклически деформированном металле, которые позволяют обосновать предлагаемую зависимость 5с от пластической деформации в виде 5с = 5с(и).  [c.73]

Таблица 2.2. Характеристики хрупкого разрушения предварительно циклически деформированных образцов Таблица 2.2. <a href="/info/535611">Характеристики хрупкого разрушения</a> предварительно циклически деформированных образцов
Анализ данных рис. 2.10 показывает, что зависимость критического напряжения хрупкого разрушения от пластической деформации является инвариантной к истории деформирования, если в качестве меры накопленной пластической деформации выбран параметр Одквиста х. Действительно, представление результатов опытов на растяжение предварительно циклически наклепанного материала в координатах S — е/ (или S — еР,  [c.76]

S (ef) не является инвариантной к истории деформирования (рис. 2.10,6). В координатах S — я значения S для исходного состояния материала и для предварительно статически или циклически деформированного материала могут быть удовлетворительно описаны единой зависимостью S (k). Разумеется, в дальнейшем требуется более тщательная всесторонняя проверка инвариантности функции S (x) к условиям деформирования. С этим вопросом тесно связан вопрос о физической природе увеличения критического разрушающего напряжения хрупкого разрушения в деформируемой структуре.  [c.76]


Допустив, что циклическое деформирование материала описывается обобщенной диаграммой циклического деформирования, и учитывая (2.33), параметр согласно работе [124 можно определить по зависимости  [c.95]

Подчеркнем, что в общем случае при циклическом нагружении в условиях объемного напряженного состояния (ОНС), реа-лизирующегося, например, у вершины трещины или острого концентратора в конструкции, соотношение компонент приращения напряжений при упругой разгрузке может не совпадать с идентичным соотношением напряжений в момент окончания упругопластического нагружения [66 68, 69, 72, 73]. Поэтому интенсивность приращения напряжений 5т, при которых возобновится пластическое течение при разгрузке (или, что то же самое, при реверсе нагрузки), может быть меньше, чем в одноосном случае, где циклический предел текучести 5т = 20т для идеально упругопластического тела [141, 155]. Это обстоятельство приводит к некоторым особенностям деформирования и соответственно повреждения материала в случае ОНС. Например, при одинаковом размахе полной деформации в цикле можно получить различные соотношения интенсивности размаха пластической АеР и упругой Де деформаций за счет изменения параметра 5т-  [c.130]

Долговечность первой стадии весьма мала по отношению к долговечности, отвечающей зарождению макроразрушения [ПО, 111, 152]. На самых ранних стадиях процесса формирования зародышевых усталостных микротрещин происходит их притупление за счет пластического деформирования при обратном нагружении. Поэтому микротрещины после зарождения растут стабильно (из-за притупления напряжения в их вершине меньше теоретического предела прочности От. п) по механизму стока дислокаций в их вершины при циклическом нагружении. Условие нестабильного роста микротрещин выполняется при значительном увеличении их длины. Количество циклов, свя-  [c.137]

Исследования барьерной роли микронапряжений и составляющих деформационной субструктуры позволили установить, что с ростом пластической деформации эффективность указанных барьеров по остановке трещин увеличивается. Используя взаимосвязь критического напряжения хрупкого разрушения S с сопротивлением материала развитию микротрещин, т. е. с барьерами различной природы, предложен подход к аналитическому прогнозированию S в статически и циклически деформированном материале. Оказалось, что S независимо от истории нагружения монотонно увеличивается с ростом накопленной деформации, мерой которой может служить параметр Одквиста.  [c.147]

Выявленные закономерности деформирования и разрушения материала при циклическом нагружении позволили сформулировать деформационно-силовой критерий, который дает возможность прогнозировать долговечность по условию зарождения макроразрушения при ОНС с учетом максимальных нормальных напряжений в цикле и особенностей суммирования повреждений при нестационарном нагружении.  [c.148]

К разрушениям второго типа, которые могут происходить также при различных схемах нагружения, следует отнести разрушения, для которых критические параметры существенно зависят от времени нагружения в том или ином виде. Типичным примером является разрушение, получившее в литературе название разрушение при взаимодействии ползучести и усталости [240, 341] при циклическом нагружении в определенном температурном интервале долговечность при одной и той же амплитуде деформации зависит от скорости деформирования, значительно уменьшаясь при малых эффективных скоростях деформирования, в частности при циклировании с выдержками. На стадии развития усталостного повреждения также известны многочисленные экспериментальные данные о влиянии частоты нагружения в определенных условиях, особенно в коррозионной среде, на скорость роста усталостных трещин [199, 240, 310,  [c.150]

Рис. 3.1. Влияние скорости деформирования I (а, б) и частоты нагружения f (в) на характеристики разрушения в условиях ползучести е/ (а) (ферритная сталь 0,5% Сг, 0,25% Мо. 0,25% V при Г = 550 С [342]), при циклическом нагружении (б) сталь типа 304, Де = 1 % при 7 = 600°С (/) и Г = 700 С (2) Рис. 3.1. <a href="/info/521910">Влияние скорости</a> деформирования I (а, б) и <a href="/info/28897">частоты нагружения</a> f (в) на <a href="/info/481866">характеристики разрушения</a> в условиях ползучести е/ (а) (<a href="/info/101259">ферритная сталь</a> 0,5% Сг, 0,25% Мо. 0,25% V при Г = 550 С [342]), при <a href="/info/28783">циклическом нагружении</a> (б) сталь типа 304, Де = 1 % при 7 = 600°С (/) и Г = 700 С (2)
Циклический предел пропорциональности ст д, МН/м (кгс/мм ),—напряжение, соответствующее точке перехода от линейного к нелинейному участку диаграммы деформирования. Циклический предел текучести аЧ, МН/м. (кгс/мм ), —напря-  [c.13]

Система циклических диаграмм деформирования необходима для получения основных параметмв кривых деформирования — циклического предела текучести параметра упрочнения и их зависимостей от числа полуциклов нагружения.  [c.218]

Рис. 15. Начальные участки диаграмм статического (7) и циклического деформирования циклически разупроч-няющегося металла при испытании в воздухе (2) и активной жидкой среде (5) tg а = f tg о, = fи tg а, =Е Рис. 15. Начальные участки диаграмм статического (7) и <a href="/info/66036">циклического деформирования циклически</a> разупроч-няющегося металла при испытании в воздухе (2) и активной жидкой среде (5) tg а = f tg о, = fи tg а, =Е
На малоцикловую усталость углеродистых сталей существенное влияние оказывает также предварительное деформационное упрочнение. Эксперименты (Романив А.Н. [194, с. 101 — 102]) на листовых образцах из стали 20 толщиной 2,5 мм, предварительно деформированных циклическим пульсирующим изгибом в воздухе, с целью определения степени деформации при различной базе показали, что если величина предварительной амплитуды циклической деформации меньше рабочей, то предварительная деформация, может повысить долговечность стали до 40 %.  [c.124]


Особенно интенсивно эти эффекты проявляются в области малоцикловой усталости. Пластически деформированный объем в вершине трещины работает именно в этих условиях и снижает в результате циклического воздействия свое сопротивление разрушению. Таким образом, хрупкое разрушение пластически деформируемого циклическим нагружением объема металла в вершине трещины присходит при нагрузках ниже, чем при монотонном пластическом деформировании его. Трещина, пройдя поврежденный циклическим воздействием объем, попадает в неповрежденный материал вне зоны пластической области, подвергнутой циклическим деформациям, у которого сопротивление хрупкому разрушению выше. Затем описанный процесс повторяется до нового скачка трещины. При хрупком разрушении пластически деформированной циклической нагрузкой области в вершине трещины происходит резкое увеличение скорости деформации и трещина может затормозится в неповрежденном циклической пластической деформацией объеме только при условии, что коэффициент интенсивности напряжений будет ниже динамического критического коэффициента интенсивности напряжериш.  [c.326]

Приведенные выше зависимости рассмотрены применительно к статическому упругопластическому деформированию. Циклическое упругопластическое деформирование в общем случае йвляется знакопеременным как по напряжениям, так и по деформациям. В этой связи целесообразно рассмотреть врзможность рас-пространейия приведенных зависимостей, описывающих взаимосвязь продольных и поперечных деформаций, на случай циклического нагружения.  [c.119]

Следует иметь в виду, что не только вибрация, но и направление динамических воздействий оказывает существенное влияние на трение и износ. Так, деформация одинаковых материалов при наличии тангенциальной вибрации в несколько раз выше, чем при нормальной вибрации. Причиной этого является изменение напряженного состояния в зоне контакта в условиях нормальных вибраций процесс накопления контактных деформаций ограничивается ползучестью при действии вибрации тангенциального направления происходит пере-деформирование (циклическое оттеснение) поверхностных слоев материала. В зависимости от материалов используемой фрикционной пары, амплитуды и продолжительности воздействия вибрации коэффициент трения в динамическом режиме по сравнению со статическим может изменяться в 1,5...2 раза. Изменение контактных деформаций при динамическом нагружении ведет к увеличению объема поверхностного слоя, активизированного упругопластическим деформированием. Расширение активационного объема распространения упругопластической деформации вызывает, в свою очередь, повышение интенсивности окислительного износа и схватывания, которые могут возрасти на порядок по сравнению с имющими место в статических условиях.  [c.501]

Влияние предварительного циклического деформирования на критическое напряжение хрупкого разрушения изучали применительно к стали 15Х2НМФА в третьей серии опытов. Для этого-корсетные образцы / (рис. 2.9) предварительно подвергали различным режимам жесткого циклического нагружения (табл. 2.1) при 7 = 20 °С. Затем из продеформированных образцов вырезали корсетные образцы II диаметром 5 и 3 мм (рис. 2.9), ко-  [c.74]

Рассмотрим возможность прогнозирования зависимости S (x) по уравнению (2.22), исходя из следующей процедуры. Коэффициенты с с и Лд в (2.22) будем определять на основании.экспериментальных данных по статическому разрыву одноосных образцов в исходном состоянии (первая серия испытаний), а сравнение аналитической зависимости S (x) проведем с экспериментальными данными, полученными в третьей серии испытаний (циклический наклеп с последующим растяжением в области низких температур). На рис. 2.12 выполнено такое сравнение зависимости 5с(и), рассчитанной по уравнению (2.22) ( i = 2,27. 10- МПа-2 С2 = 4,03- 10 MHa Лд=1,87) с экспериментальными значениями 5с для стали 15Х2НМФА. Условия предварительного циклического деформирования и характеристики последующего хрупкого разрушения образцов приведены в табл. 2.1 и 2.2.  [c.81]

Р1зложенные здесь модельные представления о влиянии деформации на критическое напряжение хрупкого разрушения S подтверждаются результатами фрактографических и металлографических исследований. Возникновение деформационной субструктуры, обусловленное пластическим деформированием, приводит, как предполагалось, к появлению дополнительных барьеров для микротрещин скола. Тогда фрактуры поверхностей хрупкого разрушения образцов с различной степенью пластической деформации х, предшествующей разрыву, прежде всего должны различаться величиной фасеток скола с ростом х средний размер фасеток должен уменьшаться. Такая закономерность действительно прослеживается как для образцов, испытавших перед разрушением статическую деформацию растяжением, так и для образцов, которые испытывали по программе Циклический наклеп и растяжение .  [c.83]

Рассмотрим усталостное разрушение зерна поликристалли-ческого ОЦК металла. При периодическом нагружении процесс усталостного разрушения зерна можно подразделить на три стадии 1) зарождение микротрещин по границам и в теле фрагментированной (или ячеистой) дислокационной структуры, возникающей в процессе циклического деформирования 2) стабильный рост микротрещин за счет эмиссии дислокаций из их вершин 3) образование разрушения в масштабе зерна при нестабильном росте микротрещин.  [c.137]

Процесс малоциклового усталостщ)го разрушения ОЦК металлов может быть подразделен на три этапа множественное зарождение микротрещин на самых ранних стадиях циклического упругопластического деформирования, стабильное подрастание микротрещин за счет эмиссии и стока дислокаций в их вершины и, наконец, нестабильное развитие микротрещин до ближайших эффективных барьеров, которыми могут являться микронапряжения или границы деформационной субструктуры. Исходя из указанной схематизации усталостного разрушения ясно, что долговечность до зарождения макроразрушения определяется двумя параметрами НДС неупругой деформацией (точнее, размахом неупругой деформации в цикле) и максимальными напряжениями в цикле. Первый параметр определяет скорость стабильного роста микротрещины, а второй — ее критическую длину.  [c.148]

При циклическом деформировании также можно указать широкий диапазон условий (в первую очередь относительно низкая температура, инертная среда), для которых зависимости, определяющие зарождение и развитие усталостного разрушения, не включают параметров, функционально связанных с временными факторами. Такими зависимостями являются, например, известные уравнения Коффина — Мэнсона [302, 303, 364] и Пэриса [192].  [c.150]

В условиях циклического нагружения уменьшение эффективной скорости деформирования, обусловленное либо уменьшением частоты, либо выдержкой в цикле, либо формой цикла, может вызвать существенное снижение числа циклов Nf до разрушения, как показано на рис. 3.1,6 на примере нержавеющей стали типа 304, испытанной при 600 и 700 °С и размахе деформации Ае = 1 %. Аналогичные данные получены для бейнитной стали 2,25 Сг — 1 Мо [286] при Т = 575 °С и Ле = 0,5 % выдержка в циклах растяжения и сжатия до 6 мин приводит к снижению усталостной долговечности в три-четыре раза по сравнению с непрерывным циклированием со скоростью деформирования = 4-10- с-. Подобное влияние скорости деформирования на повреждаемость материала наблюдается и на стадии роста усталостной трещины. Например, для никелевого сплава 1псопе1718 уменьшение частоты нагружения до 0,1 Гц  [c.151]



Смотреть страницы где упоминается термин Деформирование циклическое : [c.60]    [c.615]    [c.218]    [c.187]    [c.12]    [c.75]    [c.77]    [c.80]    [c.87]    [c.87]    [c.127]    [c.132]    [c.153]   
Повреждение материалов в конструкциях (1984) -- [ c.378 , c.382 ]



ПОИСК



19 — Зависимость от механических статическом и циклическом деформировании

Анализ некоторых подходов к описанию циклических диаграмм деформирования

Гаденин, А. Н. Романов. Взаимосвязь продольной и поцеречной деформаций при одноосном циклическом упругопластическом деформировании

Гистерезис при циклическом деформировании

Гусенков, Г. В. Москвитин Исследование сопротивления материалов неизотермическому циклическому деформированию

Деформирование длительное циклическое 80 — Диаграмма

Деформирование длительное циклическое Схема кривых 203 — Уравнение

Деформирование циклическое упругопластическое— Режимы в опасных

Деформирование циклическое упругопластическое— Режимы в опасных точках элементов конструкций

Деформирование — Влияние на циклическую

Деформирование — Влияние на циклическую прочность

Диаграмма деформирования циклического деформирования

Диаграмма циклического деформирования

Диаграммы статического и циклического деформирования

Диаграммы циклического деформирования обобщенные 84—96, НО—113 Аналитическое выражение

Диаграммы циклического деформирования обобщенные 84—96, НО—113 Аналитическое выражение нагружения

Интерполяционные соотношения для оценки основных параметров процесса циклического упругопласгического деформирования в зонах концентрации напряжений

Исследование сопротивления материалов неизотермическому циклическому деформированию

Кинетика разрушения деталей машин в условиях циклического деформирования

Кривая деформирования длительного циклического деформирования

Кривая деформирования изотермического циклического

Кривые циклического деформирования

Метод расчета НДС при квазистатнческом (монотонном и циклическом) нагружении в случае упругопластического, вязкоупругого и упруговязкопластического деформирования материала

Методика непрерывной записи диаграмм упругопластического деформирования при циклическом неизотермическом нагружении

Методика экспериментального определения тепловой энергии при статическом и циклическом упругопластическом деформировании

Напряженно-дефор миров энное состояние при циклическом упруго-пластическом деформировании

Нестабильность структуры в процессе циклического деформирования

Обобщенная диаграмма циклического деформирования и определение ее параметров

Полосы — см, также Балки о узким при циклическом деформировании

Построение кривых деформирования для различных программ циклического неизотермического нагружения

Предельное состояние и несущая способность при циклическом упруго-пластическом деформировании

Разогрев полимерных материалов вследствие циклического деформирования

Расчетные характеристики сопротивления статическому, циклическому и длительному статическому деформированию конструкционных материалов

Расчетные характеристики сопротивления циклическому и длительному статическому деформированию конструкционных материалов

Сопротивление деформациям длительному циклическому деформированию

Сопротивление деформированию и разрушению жаропрочных материалов при статическом и циклическом нагружении

Сопротивление деформированию и разрушению при циклическом нагружении

Сопротивление деформированию и разрушению при циклическом нагружении в связи с условиями нагружения и етруктурньши изменениI ями материала

Сопротивление деформированию при сложных режимах циклического нагружения

Сопротивление длительному циклическому деформированию и разрушению

Сопротивление малоцикловому деформированию. Связь характеристик циклического и статического нагружений

Сопротивление малоцикловому и длительному циклическому изотермическому и неизотермическому деформированию

Сопротивление материалов циклическому упругопластическому деформированию и разрушению

Сопротивление циклическому пластическому деформированию

Упругопластическое деформирование полого толстостенного цилиндра при циклическом нагружении внутренним давлением

Упругопластическое деформирование полого шара при циклическом изменении внутреннего давления

Численные методы определения полей упругопластических деформаций элементов конструкций при термомеханическом нагружении Модели физически нелинейной среды при циклическом упругопластическом деформировании

Шаг циклический

Экспериментальное определение энергии деформирования и разрушеМетодика определения циклического эффекта Баушингера

Энергия статического и циклического упругопластического деформирования и разрушения конструкционных материалов



© 2025 Mash-xxl.info Реклама на сайте