Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения с множителями связей

Уравнения движения с множителями связей. Пусть на систему наложено s дифференциальных неинтегрируемых связей, заданных равенствами (26) п. 16  [c.295]

В предыдущей главе мы видели, что интегрирование системы уравнений в независимых координатах может быть заменено интегрированием одного уравнения в частных производных. Естественно возникает вопрос, нельзя ли и для уравнений движения с множителями установить подобную же связь с некоторым уравнением в частных производных при этом можно, конечно, заранее ожидать, что, с одной стороны, интеграция этого уравнения в частных производных введёт лишние постоянные, а с другой — даст что-либо имеющее отношение к реакциям связей. Решением поставленного вопроса мы и займёмся в настоящей главе.  [c.462]


Неудерживающие связи математически представляются в виде неравенств. Ёаш в процессе движения механической системы все неудерживающие связи напряжены, то реакции их могут быть учтены в уравнениях движения с помощью множителей Лагранжа [5], которые должны иметь определенный знак.  [c.57]

Приложение теорий последнего множителя к уравнениям несвободного движения, содержащим множители связей. Задача интегрирования уравнений несвободного движения, содержащих множители связей, значительно сложнее подобной же задачи, относящейся к уравнениям в независимых координатах тем не менее, теория последнего множителя Якоби может и здесь оказать свою помощь. По предыдущему, для того чтобы упомянутая теория могла быть приложена с пользою, нужно знать наперёд, до окончания интеграции, хотя одно значение множителя данной системы. Во избежание длинных выкладок- мы ограничимся  [c.436]

Метод Лагранжа позволяет также учитывать возможные ограничения, накладываемые на движение точки переменной массы. Пусть движение точки стеснено связями с уравнениями связей вида fj r,t) = О, = 1,2. Тогда принцип Гамильтона для определения уравнений движения с учетом наложенных ограничений можно применить к новой функции L + jfj, где j — неопределенные числовые множители Лагранжа. В этом случае вариационный принцип Гамильтона в общем виде выглядит так  [c.73]

Уравнение / х, у, г, /)=0 связывает координаты точки и является уравнением связи. Три уравнения движения вместе с уравнением связи полностью определяют движение материальной точки. Сами уравнения называются уравнениями Лагранжа с множителями.  [c.270]

Выяснилась также необходимость составления уравнений движения, наиболее удобных для изучения механических систем с неголономными (линейными в то время) связями. Уравнения Лагранжа с множителями казались сложными.  [c.4]

Условие (20) необходимо и достаточно (A. . Сумбатов, см. [101]) для того, чтобы некоторое решение qi t) уравнений несвободой системы с множителями связей (при связях (1)) находилось среди решений уравнений, полученных из (18), (1). Соответственно интегральный принцип Гамильтона для неголономной системы имеет характер вариационного принципа стационарного действия (17) только для движений, удовлетворяющих равенству (20).  [c.145]


Постановку задачи рассмотрим на примере автономной механической системы с одной идеальной (вообще говоря, неголономной) связью. Уравнения движения с неопределённым множителем в канонических переменных Рг — 1,, п) имеют вид  [c.235]

Авторы, решающие эту задачу, правильно указывали, что ее нельзя решить при помощи уравнений Лагранжа благодаря наличию неголономной связи (14.39) они применяют для составления уравнений движения либо уравнения Аппеля, либо уравнения Лагранжа с множителями (14.29) так как ни те, ни другие уравнения не входят в программу втузовского курса механики, то мы считаем полезным показать решение этой задачи при помощи того аппарата, который известен студенту втуза.  [c.416]

Поскольку движение систем с дифференциальными связями нередко описывают уравнениями, содержащими реакции этих связей или неопределенные множители Лагранжа, то применение теории Рауса к таким системам требует особой внимательности [14, 20]. Дело в том, что указанные выше уравнения систем с дифференциальными связями не могут быть представлены в виде (1), так как для реакций связей или неопределенных множителей Лагранжа нет соответствующих дифференциальных уравнений. Поэтому для применения теории, изложенной в предыдущих параграфах, к неголономным системам, необходимо исключить зависимые скорости из выражений всех первых интегралов указанных уравнений движения системы с помощью уравнений неголономных связей. При этом полученные функции будут представлять собой первые интегралы уравнений движения рассматриваемой системы, записанных в форме Чаплыгина (см. следующий параграф), Воронца, Больцмана-Гамеля и др., которые не содержат реакции связей и неопределенные множители Лагранжа и представимы в виде (1), а сами первые интегралы примут вид (2).  [c.436]

Далее, применяя к этому уравнению последующую процедуру метода неопределенных множителей, изложенного на с. 206, придем к уравнениям Лагранжа с реакциями связей. Таким образом, система, состоящая из уравнения (5.27) и уравнений связей (5.10), эквивалентна системе (5.18). Более того, можно утверждать, что общее уравнение механики и уравнения движения с реакциями любых идеальных связей эквивалентны. .  [c.217]

Пусть /(х) — гладкая функция, причем /=/=0 в точках, где /=0. Если принять уравнение /(х)=0 в качестве уравнения связи, наложенной на систему, то движения такой несвободной системы с п—1 степенями свободы описываются, как известно, уравнениями Лагранжа с множителем Я  [c.34]

Действительно, число независимых постоянных интегрирования равно числу независимых первых интегралов или удвоенному числу независимых вторых интегралов уравнений движения. Но кинематические уравнения движения должны удовлетворять уравнениям геометрических и кинематических связей, не зависящим от постоянных интегрирования. Уравнения геометрических связей можно рассматривать как вторые интегралы уравнений Лагранжа первого рода с исключенными множителями kj и рз, а уравнения кинематических связей, соответственно, как их первые интегралы. Итак, среди интегралов рассматриваемой системы уравнений есть к вторых интегралов и I первых, независимых от постоянных интегрирования. Следовательно, число независимых постоянных интегрирования равно 6/г — 2/г — I.  [c.34]

Из сказанного выше видно, что основная идея С. А. Чаплыгина получения уравнений движения неголономных систем заключается в отказе от метода множителей Лагранжа и применении непосредственного исключения зависимых обобщенных скоростей. Ограничения, наложенные С. А. Чаплыгиным на уравнения связей, кинетическую и потенциальную энергии, легко устранимы. Это, собственно, и было выполнено П. Аппелем, а затем Больцманом и Гамелем.  [c.164]

Принцип Гаусса позволяет эффективно применить метод множителей Лагранжа к составлению дифференциальных уравнений движения систем с нелинейными неголономными связями. На основании принципа Даламбера — Лагранжа это выполнить нельзя. См. Г. К. Суслов, Теоретическая механика, Гостехиздат, 1946.  [c.191]


Уравнения Аппеля. Применение уравнений Лагранжа с неопределенными множителями при составлении уравнений движения механизма с неголономными связями приводит к необходимости совместного решения системы уравнений, число которых превышает число степеней свободы на удвоенное число неголономных связей. Поэтому для изучения динамики механических систем с неголономными связями неоднократно предлагались дифференциальные уравнения, применение которых позволяет уменьшить число совместно решаемых уравнений. Из этих уравнений рассмотрим лишь уравнения Аппеля ).  [c.157]

Эти уравнения называются уравнениями Воронца. Они должны рассматриваться совместно с уравнениями связей (15). Полученная система уравнений движения неголономной системы не содержит множителей связей. Число уравнений равно п + s, т. е. совпадает с числом обобщенных координат.  [c.301]

Мы получили уравнения движения произвольной механической системы в простой и ясной форме. Тем не менее для практики эта форма уравнений движения не очень удобна. В конкретных задачах нас, как правило, не интересуют величины К (связанные с величиной реакций связи) по этой причине мы в следующей главе представим основные уравнения в другой форме, не вводя множители X.  [c.37]

Дифференциальные уравнения движения эквивалентного редуктора (а — k — d — b), используя матричную форму уравнений Лагранжа с неопределенными множителями и уравнения связей (3.19), запишем в виде [см. (2.65), (2.70)1  [c.112]

Последний множитель, содержащий мнимую степень е, может быть представлен через тригонометрические функции и поэтому остается ограниченным при любом значении t. Свойства устойчивости движения связаны с множителем если < О, то соответствующее слагаемое описывает затухающее движение, а если О, то такому слагаемому соответствует удаление системы от невозмущенного режима. Таким образом, для устойчивости состояния равновесия механической системы необходимо, чтобы среди корней характеристического уравнения не было ни одного с положительной вещественной частью в противном случае одно из частных решений, а вместе с этим и общее решение, обнаружит возрастающую тенденцию.  [c.155]

Соотношение (11.1.10) есть общее уравнение движения материальной системы с удерживающими совершенными связями. Оно позволяет, если воспользоваться (II. 1.9), вывести уравнения движения, соответствующие методу Лагранжа. С это№ целью проведем преобразования (И.1.10) к обобщенным координатам q , q ,. .., qi. Для сокращения записей сумм условимся опускать знак суммирования во всех одночленах, множители которых имеют одинаковые индексы. Например, выражение — согласно этому пра-  [c.32]

Уравнения Рауса. Раньше других для исследования движения механической системы с неголономными связями были применены уравнения Рауса со множителями. Эти уравнения применимы как для систем с голономными, так и с неголономными связями.  [c.535]

Первым опубликовал в 1897 г. уравнения движения для систем с неголономными связями С. А. Чаплыгин. Уравнения Чаплыгина не содержали неопределенных множителей Лагранжа они были выведены для частного случая неголономных систем, вполне циклических по современной терминологии, т. е. таких, для которых кинетическая энергия системы, силовая функция заданных сил и уравнения неголономных связей обладают одним и тем же числом одних и тех же циклических координат. Подобные системы практически встречаются часто, и поэтому уравнения Чаплыгина приобрели широкую известность, несмотря на некоторые затруднения вычислительного порядка, связанные с тем, что кинетическая энергия системы входит в уравнения Чаплыгина в двух видах. Приводим уравнения Чаплыгина  [c.4]

При выводе уравнений с множителями Лагранжа применяется, как известно, аксиома о связях, т. е. вводятся в рассмотрение, наряду с известными активными силами, еще неизвестные силы (управляющие воздействия), обеспечивающие вместе с данными силами реализацию искомого движения, согласно заданным связям. Иначе говоря, выводятся уравнения движения как бы голономной системы в них неизвестные силы входят через множители Лагранжа и только тогда, после вывода уравнений движения, к ним присоединяются уравнения неголономных связей.  [c.7]

Неопределённые множители входят в уравнения движения линейно (первая форма уравнений Лагранжа). В уравнениях движения в форме (5.26) реакции связей с неопределёнными множителями включаются в правые части в число обобщённых непотенциальных сил.  [c.70]

Функция поверхности непрерывна вместе с производными до второго порядка включительно по своим аргументам. Связь может создавать реакцию в направлении градиента функции и с помощью неопределённого множителя Л представляется произведением ЛУ/ (V/ 0). Уравнения движения материальной точки в декартовых координатах принимают вид  [c.79]

Если мы пожелаем найти реакцию стержня, то должны обратиться к уравнениям с множителями связи, например, в декартовых координатах. Уравнение связи и уравнения движения с множителем связи для частицы mi напишутся в этом случае так [см. формулы (32.4) и (32.6)]  [c.334]

Предварительные замечания. Вопрос об определении движения несвободной материальной системы без неинтегрируемых связей может быть решён двояким путём или исчтегрированием уравнений движения, содержащих множители связей, а именно уравнений Лагранжа первого рода ( 177), когда система координат декартова, и уравнений, аналогичных названным, когда система координат произвольная ( 189), или интегрированием уравнений Лагранжа второго рода в независимых координатах ( 191). Последние уравнения быстрее и непосредственнее приводят к цели в них число переменных доведено до надлежащего минимума, поэтому и произвольных постоянных интеграции появляется наименьшее число. Интегрирование уравнений с множителями значительно сложнее число переменных в них превышает Необходимое, а потому и число произвольных постоянных интеграции больше, чем нужно для искомого движения ( 119, 121, 177, 189). Но зато движение системы определяется  [c.461]


Дальнейшее исследование свойств подобных дифференциальных форм высших порядков и уравнений движения, выражающихся через них, бесспорно может привести к новым интересным фактам. Лагранж, Эйлер и все другие классики были бы весьма удивлены новым видом уравнений динамики. Но уже и сейчас можно утверждать, что новая форма уравнений динамики является основой дальнейшего развития механики неголономных систем самого общего вида. Если на базе обычных уравнений Лагранжа удается выводить все существующие типы уравнений движения неголономных механических систем только с неголономными связями первого. порядка и 1при этом линейными относительно обобщенных скоростей, то уравнения новой формы могут быть непосредственно применены и для вывода из них уравнений движения с неголономными связями любого вида, т. е. любого дифференциального порядка и любой структуры в смысле линейности или нелинейности уравнений связей относительно производных от обобщенных координат. Уравнения движения для систем с неголономными связями второго порядка были выведены в середине шестидесятых годов тем же И. Ценовым. Уравнения движения с множителями Лагранжа при нелинейных неголономных связях перво-  [c.11]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

Если в некоторый момент времени / = 1 некоторые множители связей обращаются в нуль, а затем становятся отрицательными, или левые части уравнений каких-либо связей становятся положительными, то это означает, что в этот момент времени система оставляет упомянутые связи. Тогда найденные ранее интегралы уравнений Лагранжа первого рода пригодны лишь на интервале времени от начального момента / = ДО момента i = ,. В момент времени I = оканчивается первый этап движения системы с односторон-ними связями. После момента t — = следует полагать в уравнениях Лагранжа первого рода множители связей, оставленных системой, равными пулю и интегрировать укороченную сТгстему. Начальные условия для этого этапа определяются из найденных ранее интегралов движения.  [c.35]

Уравнения Лагранжа второго рода с множителями применяются главным образом для исследования движений систем с неголономными связями, а также в тех случаях сложных го-лономных связей, когда выявление некоторых обобщенных координат оказывается затруднительным. Подробное изложениг теории уравнений Лагранжа, в том числе и уравнений с множителями, относится к специальному курсу аналитической механики ).  [c.420]

Для составления уравнений движения механизма с неголо" номными связями нельзя использовать обычные уравнения Лагранжа второго рода, а следует применять их обобщение, известное под названием уравнений Лагранжа с неопределенными множителями-.  [c.153]

Задача о движении системы с го-лономными связями формально всегда может быть решена, что частично объясняется возможностью исключения зависимых координат. Однако для задач с неголономными связями общего метода решения не существует. Правда, дифференциальные уравнения неголономных связей можно рассматривать совместно с дифференциальными уравнениями движения и тогда можно исключить зависимые величины с помощью метода множителей Лагранжа, который мы рассмотрим позже. Однако в более специальных случаях неголономных связей требуется индивидуальный подход к каждой задаче. При формальном изложении классической механики почти всегда предполагается, что любая имеющаяся связь является голономной. Это ограничение несколько сужает применимость общей теории, несмотря на то, что в повседневной практике нередко встречаются неголоном-ные связи. Причина этого состоит в том, что связи, наложенные на систему, обычно реализуются посредством различных поверхностей, стенок или стержней и играют заметную роль лишь в макроскопических задачах. Но современных физиков интересуют главным образом микроскопические системы, в которых все объекты (как внутри системы, так и вне ее) состоят из молекул, атомов и еще более мелких частиц, порождающих определенные силы. Понятие связи становится в таких случаях искусственным и встречается редко. Связи используются здесь лишь как математические идеализации, полезные при описании  [c.25]

Резюме. Метод множителей Лагранжа остается справедливым и в случае неголономных дополнитель ных условий. Силы, возникающие в связи с этими уело ВИЯМИ по-прежнему могут быть найдены. Эти силь имеют полигенную природу. Неголономные допол нительные условия и полигенные силы одинако во влияют на уравнения движения Лагранжа они при водят к появлению в этих уравнениях правых частей  [c.175]


Уравнения Аппеля. Аппель предложил уравнения движения, которые не содержат множителей связей и применимы как к голо-номным, так и к неголономным системам с неинтегрируемыми связями вида (1). Получим эти уравнения в псевдокоординатах (см. п. 17). Пусть псевдоскорости я- определены по формулам (29) п. 17  [c.306]

Интегрирование уравнений (30.31) весьма затруднительно. Обыкновенно закон движения несвободной материальной системы находят при помощи интегрирования уравнений других типов, с которыми мы познакомимся впоследствии. Уравнениями с множителями и в особе1шости равенствами (30.32) пользуются лишь для определения реакций связей. В самом деле, когда движение системы найдено, т. е. х , у , г,, J, , известны как функции времени, из уравнений (30.32) легко найти Бсе множители Х и и, следовательно, по формуле (30.15) можно определить реакции в функции времени.  [c.300]

Тогда параметрический вариант модели можно рассматривать как односвязную составную систему с вектором обобщенных координат V = (V , б) и позиционной связью (16.2). Уравнения движения такой модели согласно излон енному в 13 можно получить, воспользовавшись дифференциальными уравнениями Лаграп ка с неопределенными множителями, в виде  [c.260]

Существование и единственность решения задачи для нелинейных уравнений осесимметричного движения газа в турбомашине в общем виде не доказаны. Однако можно высказать некоторые соображения в пользу положительного решения этого вопроса. Прежде всего существование решения очевидно из физических соображений даже для самой обшей (трехмерной) постановки. Единственность решения линеаризованных (в отношении производных) уравнений очевидна, так как они сводятся к квазилинейному эллиптическому уравнению типа уравнения Пуассона. Нелинейность уравнений существенно связана с множителем р в уравнении неразрывности, а также с производными от р (т. е. с и 7 ) в уравнении вихрей. Для частного случая линейных уравнений с р = onst up — onst, который отвечает течению несжимаемой жидкости только через неподвижные решетки (ш = 0), существование и единственность решения следуют из тех же свойств, доказанных для более общей задачи трехмерного движения. Нелинейность, зависящая от производных от р, вообше очень слабая. Она связана со смещением линий тока (вдоль которых р постоянно или является известной функцией). В предположении непрерывной зависимости формы линий тока от значений р у задаваемых в виде гладкой функции поперек входного сечения, а также от величины угловой скорости ш (такая зависимость, безусловно, должна быть непрерывной в силу эллиптичности уравнений с гладкими коэффициентами) можно определенно утверждать единственность решения нелинейных уравнений, по крайней мере, для достаточно малых областей А или для достаточно малых  [c.303]

В начале развития динамики неголономных систем дифференциальные 93 уравнения движения были выведены в различном виде Остроградским, Феррерсом и Раусом. Общая методика интегрирования этих уравнений не была разработана, а их структура, связанная с наличием декартовых координат или множителей неголономных связей, создавала значительные трудности при решении конйретных задач (о качении твердых тел). Таким образом,в конце XIX в. проблема составления динамических уравнений неголономной механики в лагранжевых координатах без множителей связей типа уравнений Лагранжа второго рода была вполне актуальной.  [c.93]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]


Смотреть страницы где упоминается термин Уравнения движения с множителями связей : [c.201]    [c.98]    [c.103]    [c.279]    [c.69]    [c.332]    [c.266]    [c.304]   
Смотреть главы в:

Теоретическая механика  -> Уравнения движения с множителями связей

Теоретическая механика  -> Уравнения движения с множителями связей



ПОИСК



Движение со связями

Множители связей

Множитель

Приложение теории последнего множителя к уравнениям несвободного движения, содержащим множители связей

Уравнение с множителем

Уравнения движения неголономных систем с множителями Лагранжа. Реакции идеальных неголономных связей

Уравнения движения точки по поверхности и по кривой. Аксиома идеальных связей. Уравнения Лагранжа первого рода с неопределенными множителями

Уравнения связей



© 2025 Mash-xxl.info Реклама на сайте