Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория течения — Решение задач

Современные проблемы механики. К числу этих проблем относятся уже отмечавшиеся задачи теории колебаний (особенно нелинейных), динамики твёрдого тела, теории устойчивости движения, а также М. тел перем. массы и динамики космич. полётов. Всё большее значение приобретают задачи, требующие применения вероятностных методов расчёта, т. е. задачи, в к-рых, напр., для действующих сил известна лишь вероятность того, какие значения они могут иметь. В М. непрерывной среды весьма актуальны проблемы изучения поведения макрочастиц при изменении их формы, что связано с разработкой более строгой теории турбулентного течения жидкости решения задач теории пластичности и ползучести создания обоснованной теории прочности и разрушения твёрдого тела.  [c.128]


Как уже отмечалось в 1, первые работы по теории струй тяжелой жидкости были посвяш ены нахождению отдельных точных решений. Новое направление в теории струй наметилось недавно, в пятидесятых годах, после иностранных работ Э. Марки и К. Воронца. Речь идет о приближенном учете влияния силы тяжести на струйные течения при больших скоростях (числах Фруда), причем за основные течения берутся решения задач теории струй невесомой жидкости (число Фруда бесконечно).  [c.26]

В результате развития этой теории все методы решения задач обтекания гидродинамических решеток несжимаемой жидкостью были обобщены, в приближенной постановке Чаплыгина, на случай дозвукового течения газа.  [c.128]

На основе развитой обш ей теории все методы решения задач потенциального течения несжимаемой жидкости через решетки элементарно обобщаются на случай произвольного одинакового движения их профилей в безвихревом потоке. При этом вместо неподвижной или стационарно движущейся решетки рассматривается решетка с заданной на профиле в функции времени т нормальной скоростью = дц> дп = (з, т) или  [c.136]

Интересно сопоставить приведенное решение этой задачи по теории течения с решением по теории малых упруго-пластических деформаций. В случае использования последней из соотношений (4.32) получаем зависимости напряжений от деформаций  [c.150]

Опыт использования теории течения для решения конкретных задач и сопоставление результатов с опытными данными показали, что при получении точных количественных данных в теории пластичности небезразличным является выбор связи между обобщенными критериями напряжений и деформаций при использовании диаграммы деформирования. Часто используют теорию в виде связи между интенсивностью напряжений о, и соответствующими деформациями. Однако в некоторых случаях наблюдаются заметные отклонения в поведении металлов от этой теории. Например, при исследовании изгиба толстого надрезанного бруса, что соответствовало работе соединения встык с непроваром, задача решалась как для плоского деформированного состояния.  [c.111]

В данной главе были рассмотрены методы и алгоритмы решения МКЭ упругопластических и упруговязкопластических неизотермических задач для случаев различного вида нагружения— квазистатического (длительного, кратковременного, циклического) и динамического. Решение упругопластических задач базируется на теории течения, а упруговязкопластических — на теории ползучести с изотропным и анизотропным упрочением. Показано, что решение упруговязкопластической задачи, учитывающее как установившуюся, так и неустановившуюся стадии ползучести, можно свести к решению упругопластической задачи, где поверхность текучести зависит от скорости неупругой деформации.  [c.48]


НДС анализировали с помощью МКЭ [43, 77, 102] путем решения упругопластической задачи в геометрически нелинейной постановке на основе теории течения, условия текучести Мизеса, модели трансляционно-изотропного упрочнения [124]. Образец  [c.101]

Б теории пластичности доказано, что при простом нагружении эти теории дают одинаковое решение. В случае сложного нагружения результаты, полученные с помош ью теории пластического течения. лучше согласуются с экспериментальными данными, и потому эта теория находит применение именно при решении задач в случаях сложных нагружений тел.  [c.303]

При отсутствии вынужденного течения горячего газа теоретическое решение задачи с использованием закономерности изменения скорости потока по длине стенки, известной из теории свободной струи, привело к расчетной формуле  [c.484]

Ниже приведено решение задачи о течении из плоского турбулентного источника (рис. 9.12), которое получено Гертлером на основе так называемой новой теории свободной турбулентности Л. Прандтля . В силу сказанного выше это течение приближенно воспроизводит поток в области основного участка турбулентной струи. Начальная же часть источника между полюсом О и концом переходного участка должна быть исключена и заменена начальным и переходным участками струи, течение в которых требует специального рассмотрения.  [c.382]

В основе теории плоских струйных течений лежит допущение о потенциальности потока, границами которого служат твердые и свободные поверхности. В большинстве решенных задач о струнных течениях жидкость предполагается несжимаемой и невесомой. Однако за последние годы получен ряд решений, учитывающих влияние силы тяжести, которое для некоторых случаев течений (через пороги, водосливы и т. п.) оказывается весьма существенным. В иных же случаях струйных течений пренебрежение весомостью жидкости вполне допустимо. Ниже рассматриваются только такие задачи.  [c.272]

Сделав ряд допущений, можно упростить решение задачи об определении управляющего усилия, создаваемого насадком. Главное из таких допущений заключается в том, что вместо пространственной задачи о течении газа внутри насадка решается соответствующая плоская задача (полагая, что движение газа происходит в плоскости угла поворота насадка). Криволинейные скачки уплотнения заменяются прямолинейными. ударными волнами. Положение возможных точек отрыва от стенок сопла можно определить, используя зависимости теории отрывных течений. Соответствующий метод расчета рассматривается в 4.6 применительно к определению усилий, создаваемых дефлектором.  [c.326]

Поскольку форма границы раздела не известна заранее, а является одной из основных целей анализа волновых течений, то в общей постановке аналитическое решение задачи становится недоступным. Второе допущение, используемое в классической теории волновых движений — допущение о малости амплитуды колебаний поверхности раздела — позволяет преодолеть эту трудность. Как будет показано в дальнейшем, в рамках теории бесконечно малых волн условия совместности фактически относятся к невозмущенному состоянию границы раздела фаз.  [c.126]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]


Основное предположение линейной механики разрушения состоит в том, что трещина распространяется тогда, когда величина коэффициента интенсивности достигает критического значения, характерного для данного материала. Совершенно эквивалентная формулировка этого предположения состоит н том, что сила G, движущая трещину, превосходит критическое значение — сопротивление распространению трещины. Формула (19.4.4) утверждает эквивалентность двух этих формулировок. Что касается механического содержания принятой гипотезы и всей теории в целом, на этот вопрос можно ответить по-разному, а в рамках формальной теории вообще его можно не ставить. Тем не менее некоторые соображения могут быть высказаны. В оригинальной работе Гриффитса предполагалось, что освобождающаяся при росте трещины упругая энергия расходуется на увеличение поверхностной энергии если есть поверхностная энергия на единицу площади, то сила сопротивления движению трещины G = Анализ Гриффитса в течение долгих лет считался безупречным, хотя в нем содержится некоторый органический дефект. Энергия поверхностного натяжения вводится в уравнения теории как нечто данное и постороннее по отношению к упругому телу. На самом деле, поверхностная энергия есть энергия поверхностного слоя, свойства которого в той или иной мере отличаются от свойств остального материала и при решении задачи теории упругости этот поверхностный слой нужно как-то моделировать. Простейшая схема будет состоять в том, чтобы рассматривать поверхностный слой как бесконечно тонкую пленку с постоянным натяжением 7. Если контур свободного отверстия имеет кривизну, то поверхностное натяжение дает нормальную составляющую силы на контуре. При переходе к разрезу, в вершине которого кривизна становится бесконечно большой, поверхностное натяжение создаст сосредоточенные силы. В результате особенность у кончика трещины оказывается более высокого порядка, а именно, вида 1/г, а не 1/У г. На это обстоятельство было обращено внимание Гудьером, однако полное решение задачи было опубликовано много позже. В связи с этим можно выразить сомнение, связанное с тем, в какой мере пригодно представление о поверхностном натяжении в твердом теле как о натянутой бесконечно тонкой пленке, а особенно в какой мере эта идеализация сохраняет смысл при переходе к пределу, когда отверстие превращается в бесконечно топкий разрез.  [c.664]

Аналитическое решение задач при ламинарном и турбулентном стабилизированном течении связано с решением системы дифференциальных уравнений теплообмена. Однако строгое решение этих уравнений связано с большими математическими трудностями даже для ламинарного течения. Результаты достаточно высокой точности удается получить благодаря обобщению большого числа экспериментов с использованием методов теории подобия.  [c.133]

Решение задачи Эйлера , лежащее в основе теории устойчивости упругих систем, в течение долгого времени не находило себе практического применения, чему в большой мере способствовали неудовлетворительно проведенные с целью проверки этого решения опыты, особенно опыты английских ученых в первой половине XIX в. Эти опыты, не подтвердившие теории Эйлера, почти совсем подорвали к ней доверие инженеров и вызвали появление ряда эмпирических, научно не обоснованных, формул для расчета сжатых стоек .  [c.328]

В связи с этим деформационную теорию пластичности широко используют в инженерной практике для многовариантных проектировочных расчетов элементов конструкций. Кроме того, для решения задачи упругопластического деформирования при переменной температуре на основании соотношений деформационной теории пластичности требуется значительно меньше машинного времени, чем для решения той же задачи с помощью теории пластического течения.  [c.79]

Постановка задачи изгиба и устойчивости тонких оболочек в условиях ползучести и методика ее решения обусловлены во многом физическими зависимостями, описывающими реологические свойства материала, т. е. используемой теорией ползучести. Эти теории строятся аналогично теориям пластичности на основе обобщения результатов опытов при одноосном деформировании (принятия той или иной гипотезы) на случай сложного напряженного состояния. При этом в зависимости от формулировки физических соотношений из значительного числа теорий ползучести выделяются два типа деформационные и теории течения. Первые устанавливают связь между девиаторами тензора напряжений и деформаций, вторые — между девиаторами тензора напряжений и скоростей деформаций.  [c.14]

При решении задач ползучести и устойчивости гибких оболочек используем физические зависимости теории течения в сочетании с гипотезами течения и упрочнения, Анизотропию при ползучести следует учитывать исходя из основных положений анизотропной теории пластичности [9, 69], в частности из модифицированных уравнений изотропной ползучести при сложном напряженном состоянии. Эти модификации состоят во введении параметров анизотропии, что эквивалентно замене интенсивности скоростей деформаций и напряжений на соответствующие квадратичные формы, в которые входят параметры анизотропии, а также в формулировке определенных условий и гипотез.  [c.15]

Законы ползучести типа течения (в некоторых формулировках) и упрочнения (в классической формулировке) имеют известные особенности в начальный момент времени (г"=0). Поэтому при решении конкретных задач с использованием теории течения численное исследование ползучести оболочки проводим не с нулевого момента времени, а с момента, близкого к нулю. При использовании теории упрочнения применяем ее моди-  [c.33]


Состояние учения о свободной конвекции в настоящее время таково, что многие стационарные задачи имеют точные или приближенные аналитические решения. Среди аналитических работ преобладают исследования ламинарных потоков, возникающих при свободной конвекции. Труднее математической обработке поддаются вопросы свободной конвекции при турбулентном течении в пограничном слое. В этом случае, как и в случае ламинарного режима, для описания теплообмена в условиях свободной конвекции применяются методы теории подобия с широким использованием эксперимента. Изучение вопросов нестационар- ной свободной конвекции имеет также большое значение. Одним из важнейших вопросов теории нестационарного теплообмена в условиях свободного движения является вопрос о влиянии вибраций на конвективные процессы. Вибрационный эффект, создаваемый или перемещением нагретой поверхности в окружающей среде или подводом возмущений в виде акустических или других периодических колебаний к самой среде, может изменить теплоотдачу в несколько раз. Такое изменение теплоотдачи позволяет качественно по-другому подходить к решению новых задач в условиях естественной конвекции, и в настоящее время обширные исследования посвящены этому вопросу. Получить общее аналитическое решение задачи не всегда удается, поэтому большинство работ посвящено экспериментальному и аналитическому исследованию частных случаев.  [c.143]

Из схемы рис. 1.1 следует, что надлежащая оценка прочности и долговечности при малоцикловом и длительном циклическом нагружении может быть реализована при соответствующем сочетании расчетов и экспериментов. Решение краевых задач (для зон действия краевых сил, концентрации напряжений механического и температурного происхождения) при малоцикловом нагружении осуществляется с использованием основных положений деформационной теории и теории течения (изотермического и неизотермического). Наибольшее развитие и применение в силу простоты получаемых решений получили различные виды модифицированных деформационных теорий, позволяющих связать напряжения Оц, деформации ви и проанализировать монотонный рост неупругих деформаций при постоянном характере изменения нагрузок в процессе нагружения. При этом смена направления нагружения (при циклических режимах знакопостоянного или знакопеременного нагружения) предполагает использование деформационной теории для соответствующего к полуцикла нагружения при смещении начала отсчета в точку изменения направления нагружения. Сложные режимы термомеханического нагружения с частичными и несинхронными изменениями во времени т нагрузок и температур I анализируются на основе различных модификаций теорий течения, устанавливающих связь между приращениями  [c.9]

Вычисление же следующих поправок к формуле Стокса и правильное уточнение картины течения на близких расстояниях с помощью прямого решения уравнения (20,17) невозможно. Хотя сам по себе вопрос об этих уточнениях и не столь важен, выяснение своеобразного характера последовательной теории возмущений для решения задач об обтекании вязкой жидкостью при малых числах Рейнольдса представляет заметный методический интерес (S. Kaplun, Р. А. Lagerstrom, 1957  [c.95]

Изложены математические методы, применяемые в задачах тепло- и массо-обмена. Приведены основы теории, постановка и решение задач, имеющих практическую направленность. Даны методы решения алгебраических, трансцендентных и дифференциальных уравнений, а также примеры точных решений уравнений тепломассообмена. Рассмотрены вопросы построения математической кодели турбулентных течений.  [c.2]

Результаты расчетов представлены на рис. 5.2, б. Здесь же показана кривая ОН, полученная в результате решения МКЭ прямой упругопластической задачи, базирующегося на теории течения в сочетании со схемой трансляционного упрочнения [124] при нагружении образца по схеме, показанной на рис. 5.2, а. В расчете принимали предел текучести Рт = = 1060 МПа, модуль упрочнения = 1800 МПа. Из рис. 5.2,6 видно достаточно удовлетворительное соответствие решений прямой (кривая 3) и обратной (кривые 1, 2) задач. Максимальное различие в результатах получилось при г/ = 7ч-9ммиг/ = = 0 н- 2 мм для кривых 1 и 2 соответственно.  [c.275]

Рассмотренная аналогия не является единственной. Для задачи о кручении бруса могут быть предложены и другие аналогии, связанные, например, с гидродинамическими законами течений. В теории упругости при решении нетсоторых задач используются также эле) тро-статические аналогии, где законы распределения напряясеннй в упругом теле устанавливаются путем замера напряженности электростатического поля в различных точках исследуемой области модели.  [c.97]

Обраи1,аясь к диаграмме деформирования идеально пластического тела, мы видим, что свойства его в известной мере оказываются промежуточными между свойствами твердого тела и жидкости. До достижения пластического состояния тело упруго и, следовательно, должно безусловно рассматриваться как твердое. После достижения предела текучести оно деформируется неограниченно или течет подобно жидкости. Можно было бы сказать, что жидкость — это твердое тело с пределом текучести, равным нулю. В связи с такой двойственной природой пластического тела и теории пластичности оответственно делятся на две группы теории течения, уподобляющие пластическое тело жидкости, и теории деформационного типа, которые строятся по образу и подобию теории упругости. Слово теории употреблено здесь во множественном числе. Единой универсальной теории пластичности до сих пор не существует, разные авторы придерживаются разных точек зрения. Ответить на вопрос, какая именно из этих теорий ближе к истине, нелегко. При решении практических задач все они дают очень близкие результаты.  [c.59]

Мы приведем здесь решение задачи о течении из плоского турбулентного источника, которое получено Гёртлером на основе так называемой новой теории свободной турбулентности Л. Прандтля . Схема такого источника показана на рис. 202. В силу сказанного выше, это течение приближенно воспроизводит поток в области основного участка турбулентной струи. Началь- 4 41J  [c.419]

При изучении газодинамических задач важную роль играют характеристические поверхности. Обшая теория позволяет получить характеристические уравнения для систем, описывающих пространственные течения при неравновесных физико-химиче-ских процессах и многофазных течениях. Ниже рассмотрены такого рода течения лишь для случая двух независимых переменных, поэтому остановимся подробнее на этом случае. При этда будем использовать подход, основанный на определении характеристик как линий, на которых нельзя задавать начальные данные при решении задачи Коши.  [c.43]

В этой главе рассмотрены некоторые специальные методы, которые используют для решения задач газовой динамики. Эти методы выделены в отдельную главу, поскольку, хотя они и не обладают какой-либо общностью, их успешно применяют для решения задач газовой динамики, приспосабливая к конкретным особенностям течения. Описаны следуюш,ие методы метод прямых (изложены два варианта метод интегральных соотношений Дородницына и метод Теленина), метод крупных частиц, метод решения обратной задачи теории сопла, метод решения релаксационных уравнений, метод конечных элементов и релаксационные методы.  [c.180]


Основное внимание уделено изучению развитых кавитационных течений при использовании методов нели]гейной и линейной теорий. Рассматривается решение задач о нестационарных кавитационных течениях методом потенциала ускорения. Показано, что многие задачи о стационарных и нестационарных кавитационных течениях сводятся к задаче Римана — Гильберта для полуплоскости и успешно решаются с помощью формулы Келдыша —Седова.  [c.2]

Движение подводных крыльев имеет неустановившийся характер ускоренное и замедленное — на режимах разгона и торможения судна, в условиях волнения. В связи с этим ряд ученых в СССР и за рубежом начал разрабатывать теорию расчета нестационарных кавитационных течений. Линейное приближение этой задачи с иомои ью метода потенциала ускорения было исследовано в 1965 г. Сонгом и в дальнейшем развито в работах М. А. Басина, А. В. Шалларя. Ряд задач нестационарных кавитационных течений был решен в работах А. В. Кузнецова.  [c.11]

При Re = (Woox/v) > 10 течение в пограничном слое на пластине становится турбулентным и закономерности переноса импульса и энергии резко изменяются. В этих условиях решение задач теплообмена возможно лишь при ряде упрощающих предположений с использованием не только теоретических, но и экспериментальных данных. Отсутствие рациональных теорий турбулентности объясняется чрезвычайной сложностью этих течений (рис. 2.14).  [c.115]

Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

На основе развития теорий течения с остаточными микронапряжениями (с целью отразить эффект Баушингера, свойственный циклическим процессам, релаксацию при выдержках и анизотропию упрочнения) и использования метода конечного элемента осуществляются вычислительные решения краевых задач при циклическом нагружении в изотермической и неизотермической постановке. Примером осуществления такого решения в Горьковском физико-техническом институте под руководством А. Г. Угодчи-кова является задача о концентрации деформации и напряжений в пластине из стали Х18Н9Т с круглым поперечным отверстием при пульсирующем малоцикловом растяжении, сопровождающемся синфазным циклическим изменением температуры. На рис. 18 представлена схема двух следующих друг за другом циклов нагружения с указанием последовательных стадий (обозначены цифрами), для которых производился расчет полей методом конечного  [c.25]

Анализируя различные подходы к решению геометрически и физически нелинейных задач теории оболочек, выбираем вариационный подход. При построении вариационного уравнения термоползучести используем допущения технической теории гибких оболочек, успещ-но применяемой в расчетах упругих пологих оболочек, и физические соотношения в форме связи тензоров скоростей изменения деформаций и напряжений с учетом ползучести материала. Вариационное уравнение смешанного типа, в котором независимому варьированию подвергаются скорости изменения прогиба и функции усилий в срединной поверхности, позволяет использовать для описания реологических свойств материала хорошо обоснованные теории ползучести типа течения и упрочнения. Задачи мгновенного деформирования решаем методом последовательных нагружений, а задачи ползучести — методом шагов по времени.  [c.13]

Решение задач течения и теплообмена в газовой среде может быть произведено на основе кинетической теории [1-12, 1-25, 2-7 и др.]1. При достаточно малых числах. Кнудсена Кп = 1//о, где / — средняя длина свободного пробега молекул, k — характерный размер, решение кинетического уравнения Больцмана может быть аппроксимировано решением в навье-стоксовском приближении, соответствующем подходу с позиции-сплошной среды. Однако при любом сколь угодно малом числе Кнуд-сена вблизи фазовой границы имеется область, в которой течение не описывается в навье-стоксовском приближении. Толщина этой области, называемой слоем Кнудсена, имеет порядок характерной длины пробега I.  [c.34]


Смотреть страницы где упоминается термин Теория течения — Решение задач : [c.345]    [c.17]    [c.169]    [c.278]    [c.196]    [c.4]    [c.131]    [c.106]    [c.20]    [c.79]    [c.212]    [c.464]   
Прикладная теория пластичности и ползучести (1975) -- [ c.170 ]



ПОИСК



Задача о течении

Задачи динамические термовязкоупругост деформационной теории 232-234 - Методы решения задач теории пластического течения 234-236 - Прикладные методы

О решении некоторых краевых задач в теории потенциальных течений газа и распространении слабых ударных волн

О точном методе решения некоторых задач теории пространственных сверхзвуковых течений газа

Решение некоторых задач по теории течения

Теория течения

Теория течения — Решение задач тонкостенной трубки

Труба Решение задачи по теории течени



© 2025 Mash-xxl.info Реклама на сайте