Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы внутренние, их свойства

Вязкость — свойство жидкости оказывать сопротивление относительному сдвигу слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутренне-  [c.18]

Рассмотрим некоторый объем газа. При медленной деформации этого объема или, что то же, при медленном перемеш,ении частиц газа в этом объеме относительно друг друга силы сопротивления их называют еще силами внутреннего трения) этим перемещениям ничтожно малы и стремятся к нулю при стремлении к нулю скорости указанных перемещений. При быстром перемещении частиц газа относительно друг друга, т. е. при больших скоростях деформаций, газ, вообще говоря, оказывает сопротивление деформированию. Это основное свойство газов, а также капельных жидкостей. Свойство газов оказывать сопротивление деформации назьшается вязкостью. Подробнее это свойство рассматривается в следующем параграфе. Для очень многих важных задач по исследованию движения газа с большими скоростями сила сопротивления деформированию оказывается пренебрежимо малой величиной. Сила сопротивления перемещению частиц газа по поверхности их соприкасания относительно друг друга, очевидно, есть касательная составляющая напряжения на этой поверхности. В обычных условиях газы практически не воспринимают растягивающих усилий, и любое малое растягивающее напряжение влечет разрыв непрерывности газа. Поэтому в газе при отсутствии касательных составляющих напряжение направлено против внешней нормали к поверхности, внутрь рассматриваемого объема газа. Газ, обладающий такими свойствами, называется идеальным газом.  [c.107]


Впервые наличие внутреннего трения между частицами жидкости было отмечено И. Ньютоном высказавшим гипотезу о том, что сила внутреннего трения между частицами жидкости зависит от свойств жидкости и пропорциональна площади соприкасающихся частиц и их относительной скорости. Позднее эта гипотеза была проверена на целом ряде экспериментов.  [c.14]

Впервые наличие внутреннего трения между слоями частиц жидкости было отмечено И. Ньютоном, высказавшим в 1687 г. гипотезу о том, что величина сил внутреннего трения между слоями частиц жидкости зависит от свойств жидкости и пропорциональна площади поверхности соприкасания слоев частиц (площади трения) и их относительной скорости перемещения. Позднее эта гипотеза была проверена на целом ряде экспериментов.  [c.16]

Вязкость жидкости и газа. Вязкостью (внутренним трением) жидкости или газа называют их свойство оказывать сопротивление перемещению одной их части относительно другой. При этом возникает тангенциальная (касательная) сила Р, вызывающая относительный сдвиг слоев жидкости или газа и определяемая из закона вязкого течения Ньютона  [c.228]

Задача о том, можно или нельзя в каждом конкретном случае ввести такое соотношение эквивалентности для систем векторов, не может быть решена формально, исходя из свойств этих систем векторов как математических объектов. Установление соотношения эквивалентности — новое аксиоматическое предположение, а вопрос о законности любого предположения такого рода каждый раз решается, исходя из физической сущности объектов, математической моделью которых являются рассматриваемые системы векторов. Например, интуитивно ясно, что при изучении движения (а не внутреннего состояния) твердого тела к совокупности сил, действующих на это тело, можно добавлять (или от нее можно отбрасывать) две силы, равные по величине н действующие вдоль одной и той же прямой в противоположные стороны. Поэтому множество векторов, изображающих систему сил, действующих на твердое тело, образует систему скользящих векторов. Легко видеть, однако, что совокупность сил взаимного притяжения, приложенных к двум разным телам, не составляет системы СКОЛЬЗЯЩИХ векторов, так как хотя силы взаимного притяжения всегда образуют векторный нуль, их отбросить нельзя, поскольку движение тел зависит, в частности, и от этих сил.  [c.346]

Если все силы, действующие на систему, в том числе и реакции связей, разделить на силы внешние и внутренние (будем обозначать их соответственно индексами е и i), то, используя свойства внутренних сил, из (13.1) получим  [c.383]


Кинематические характеристики механизма необходимы не только для оценки качества синтеза схемы механизма, но и для решения задач, связанных с прочностным расчетом и конструированием его звеньев, оценки динамических свойств механизма. Например, для проведения силового расчета механизма необходимо определить силы инерции и сопротивления движению звеньев, для чего должны быть известны скорости и ускорения их. Для вписывания механизма в конструкцию машинного агрегата необходимо знать траекторию движения его звеньев и их положения, определяющие габаритные размеры механизма. Для многих механизмов траектории движения звеньев определяют форму корпусных деталей, являющихся наиболее материалоемкими в машинах (картеры двигателей внутреннего сгорания, корпуса насосов и турбин, головки элеваторов и т. п.).  [c.188]

В чрезвычайно большом числе случаев применения фотоэлементов не предъявляются строгие требования к их измерительным свойствам. Поэтому фотоэлементы, работающие на основе внутреннего фотоэффекта, в силу их малых габаритов, низких напряжений питания и ряда конструктивных достоинств повсеместно применяются для автоматических систем, систем управления, преобразования солнечной энергии, контроля производства и т. д., за исключением тех случаев, когда относительно невысокие инерционные свойства этих фотоэлементов препятствуют их использованию.  [c.652]

Это свойство не означает отсутствия сопротивления сдвигу в среде. Несмотря на текучесть, газы сопротивляются сдвигающим усилиям. Сопротивление проявляется в том, что данной силой можно обусловить только определенную скорость деформации и для ее увеличения нужно увеличить силу. Свойство среды сопротивляться сдвигающим усилиям называют вязкостью или внутренним трением. В газах вязкость обусловлена хаотическим движением молекул. Так, при относительном смещении слоев газа со скоростями ии и + Аи (рис. 2) благодаря тепловому движению молекул происходит их перемещение из слоя в слой и соответствующий перенос количества движения. Это приводит к выравниванию скоростей слоев, обусловленному появлением силы Тц, препятствующей их относительному сдвигу.  [c.9]

По свойству внутренних сил их главный момент равен  [c.197]

Но по свойству внутренних сил их главный вектор и главный момент равны нулю, 2 Ffi = О, Мо (Fl) = О, и  [c.281]

Термодинамика — наука, изучающая самые разнообразные явления природы, сопровождающиеся передачей или превращениями энергии в различных физических, химических, механических и других процессах. Термодинамика как наука сложилась в середине XIX в., когда в связи с широким развитием и использованием тепловых машин возникла острая необходимость в изучении закономерностей превращения теплоты в работу, создании теории тепловых машин, используемой для проектирования двигателей внутреннего сгорания, паровых турбин, холодильных установок и т. д. Поэтому основное содержание термодинамики прошлого столетия — изучение свойств газов и паров, исследование циклов тепловых машин с точки зрения повышения их к. п. д. В силу этого основным методом термодинамики XIX в. был метод круговых процессов. С этим этапом развития термодинамики связаны прежде всего имена ее основателей С. Карно, Б. Клапейрона, Р. Майера, Д. Джоуля, В. Томсона (Кельвина), Р. Клаузиуса, Г. И. Гесса и др.  [c.4]

Динамика машин является разделом общей теории механизмов и машин, в котором движение механизмов и машин изучается с учетом действующих сил и свойств материалов, из которых изготовлены звенья-упругости, внешнего и внутреннего трения и др. Важнейшими задачами динамики машин являются задачи определения функций движения звеньев машин с учетом сил и пар сил инерции звеньев, упругости их материалов, сопротивления среды движению звеньев, уравновешивания сил инерции, обеспечения устойчивости движения, регулирования хода машин. Как и в других разделах теории машин, в динамике можно выделить два класса задач — анализ и синтез механизмов и машин по динамическим критериям. Весьма существенные критерии эффективности и работоспособности машин — их энергоемкость и коэффициент полезного действия также изучаются в разделе Динамика машин .  [c.77]


К. п, д. термоэлемента определяется температурами горячего и холодного спаев и свойствами материалов, из которых выполнен термоэлемент — их термоэлектродвижущей силой на 1 град, теплопроводностью и удельным электрическим сопротивлением. На величину к. п. д. термоэлемента оказывает также влияние отношение величины его внутреннего омического сопротивления к сопротивлению присоединенной внешней нагрузки.  [c.470]

Деформирование твердых тел под действием внешних сил является одним из их основных свойств. Кроме того, твердые тела обладают способностью противодействовать изменению относительного расположения своих частиц. Это проявляется в возникновении внутри тела сил, которые сопротивляются его деформации и стремятся вернуть частицы в положения, которые они занимали до деформации. Силы эти называются внутренними силами или силами упругости-, само же свойство твердых тел устранять деформацию, вызванную внешними силами, после прекращения их действия называется упругостью. Мерой, для оценки внутренних сил упругости служит так называемое напряжение (интенсивность внутренних сил подробнее см. 4).  [c.10]

До сих пор мы говорили об изоляционных свойствах отдельных материалов. Но когда материал наносится на объект, то вследствие примесей и способа нанесения изоляционные свойства материала меняются. В этом случае правильное представление об изоляции дает не коэффициент теплопроводности материала, а коэффициент теплопроводности всей конструкции в целом, который для практики имеет большее значение. Приближенно коэффициент теплопроводности конструкции определяется расчетным путем. Однако точное его значение можно определить лишь путем опыта. Последнее можно сделать как в лаборатории, так и в промышленных условиях. Для расчета тепловой изоляции применяются обычно формулы теплопередачи, которые подробно были рассмотрены выше все сказанное там относительно их упрощений полностью сохраняет силу и здесь. При расчете изоляции следует придерживаться следующего порядка. Сначала устанавливаются допустимые тепловые потери объекта при наличии изоляции. Затем выбирают сорт изоляции и, задавшись температурой на поверхности изоляции, определяют среднюю температуру последней по которой определяется соответствующее значение коэффициента теплопроводности Я з. При расчете изоляции термическим сопротивлением теплоотдачи от горячей жидкости к стенке и самой стенки можно пренебречь. Тогда температуру изолируемой поверхности можно принять равной температуре горячей жидкости. Зная температуры на внутренней и внешней поверхностях изоляции и коэффициент теплопроводности, определяют требуемую толщину изоляции б з. После этого производится поверочный расчет и определяются значения средней температуры изоляционного слоя и температуры на поверхности. Если последние от предварительно принятого значения отличаются существенно, то весь расчет повторяют снова, задавшись новым  [c.217]

Консервативные системы. — Консервативными системами называют системы, к которым применима теорема энергии, т. е. энергия которых остается постоянной при отсутствии внешних сил. Мы показали выше, что материальные системы консервативны, если предположить, что внутренние силы центральные и представляют собой функции от расстояний. Однако это условие не является необходимым для того, чтобы система была консервативной. Достаточно, чтобы внутренние силы были консервативны, т. е. чтобы они имели силовую функцию —П, или, что представляет собой одно и то же, чтобы сумма их элементарных работ выражалась полным дифференциалом — 11. Действительно, доказательство теоремы энергии основывается только на одном этом свойстве.  [c.26]

Начало исследованиям по статистической теории прочности положено работами Вейбулла [НО] и Н. Н. Афанасьева [2]. Появление этой теории вызвано необходимостью объяснить разброс экспериментальных данных при испытании большого количества образцов. Советский ученый исходил из следующих предпосылок реальный металл состоит из отдельных кристалликов, имеющих внутренние напряжения и вследствие различных условий их роста не являющихся однородной массой механические свойства отдельных зерен в направлении действующей силы различны вследствие наличия химической неоднородности и неоднородности напряженного состояния.  [c.53]

Одним из таких факторов является так называемая технологическая наследственность, под которой в обш,ем случае понимается изменение эксплуатационных свойств деталей под влиянием технологии их изготовления. Технологическое наследование свойств, в том числе геометрических погрешностей, начинается с заготовки и проходит через весь процесс изготовления детали. Неточность заготовок и Обусловленное этим колебание припусков на обработку и сил резания непосредственно сказывается на точности ряда последующих операций обработки на металлорежущих станках, ведет к наклепу поверхностей, внутренним напряжениям, которые могут самым неожиданным образом проявить себя в уже готовой машине. Так, например, при высокой температуре, характерной для работы турбин, перераспределение внутренних напряжений приводит к короблению их лопаток.  [c.5]

На рис. 1, а представлен механизм [1], обладающий свойством плавно и почти без потерь передавать энергию от одного ротора к другому независимо от соотношения их угловых скоростей. На цилиндре 1 одним концом закреплена гибкая тонкая лента (неплотно обвита много раз вокруг этого цилиндра (рис. 1, 6) и закреплена другим концом на внутренней цилиндрической стенке радиуса подвижного корпуса). Однако в таком взвешенном состоянии лента может находиться лишь в случае, если цилиндр 1 и корпус 2 неподвижны. Нормальное же их состояние, когда они вращаются с одинаковой угловой скоростью. В этом случае часть ленты под действием центробежных сил отходит к периферии и плотно прилегает к внутренней стенке корпуса, образуя ротор А, а часть навивается на цилиндр, образуя ротор В (рис. 1, в). Этот механизм работает следующим образом.  [c.22]


Основным источником колебаний в турбомашинах, наиболее существенно влияющим на общий уровень вибрации на их лапах, являются неуравновешенные силы инерции, возбуждающие поперечные колебания роторов. Поэтому вопросы динамики вращающихся роторов составляют основное содержание этой главы. В частности, здесь рассмотрены различные аспекты задачи о нахождении критических скоростей вращения валов (влияние упругости опор, несимметрии упругих и инерционных свойств ротора, влияние гироскопического эффекта дисков и т. п.) и дана общая постановка задачи об исследовании устойчивости их вращения и р вынужденных колебаниях роторов (влияние внутреннего и внешнего трений, условия самовозбуждения автоколебаний на масляной пленке подшипников скольжения и т. д.). Описаны также различные методы расчета собственных частот изгибных колебаний и критических скоростей валов и, в частности, современные методы, ориентированные на применение ЭВМ.  [c.42]

Поэтому там, где это можно, для упрощения расчета сложных систем отдельные элементы их упрощают, считая их дискретными , наделяя их только одним из отмеченных свойств. Крупные, массивные детали наделяются только инерционными свойствами, т. е. считаются твердыми телами, обладающими только массой и моментом инерции (в электросхемах — индуктивностью). Легко деформируемым деталям с небольшой массой приписывают только упругие свойства (соответственно емкостные). Считают, что абстрагированные линейные силы трения (внешнего или внутреннего в материале) могут возникать между плоскостями без массы и упругости, имеющими лишь относительную скорость перемещения. Дискретные системы имеют конечное число степеней свободы, ограниченный спектр собственных частот и описываются обыкновенными дифференциальными уравнениями.  [c.22]

Силы, действующие между соприкасаю щн-мися твердыми телами, могут быть, вообще говоря, направлены не по нормали к поверхности раздела соприкасающихся тел. Например, изогнутая стальная пружина (рис. 93) может действовать на брусок, к которому она прикасается, с силой F, направленной под каким-то углом к поверхности соприкосновения. При этом величина и направление действующей силы зависят ие только от внутренних упругих свойств пружины и бруска, но и от состояния их поверхностей.  [c.192]

При рассмотрении основных физических свойств капельных жидкостей было установлено, что жидкости, существующие в природе, или, как их обычно называют, реальные , или вязкие, обладают практически постоянной плотностью, а также очень малым сопротивлением касательным усилиям. Эти физические свойства реальных жидкостей позволили ввести в гидравлику понятие идеальной , или н е в я з к о й , жидкости, что произведено с целью облегчения решения многих задач и проблем гидромеханики и практической инженерной гидравлики. Итак, шдеаль-нот, или тевязкош, жидкостью называется такая условная жидкость, которая считается совершенно несжимаемой и нерасширяю-щейся, обладает абсолютной подвижностью частиц и в ней отсутствуют при ее движении силы внутреннего трения (т. е. силы вязкости равны нулю).  [c.15]

Из самого определения внутренних сил и из принципа равенства действия и противодействия вытекает замечательное свойство этих сил. Так как всякая внутренняя сила /, приложенная It какой-нибудь точке Р системы/ представляет собой действие другой точки Q той же самой системы, то по принципу равенства действия и противодействия существует сила—/, представляющая собой действие точки Р на точку Q и поэ ому тоже внутренняя. (1тсюда вытекает, что внутреннне силы, рассматриваемые в их совокупности, попарно равны и прямо противоположны, так что мы приходим к следующей теореме во всякой материальной системе, находящейся под действием сил, внутренние силы по самой их природе таковы, что приложенные векторы, представляющие эти силы, составляют систему, эквивалентную нулю, или уравновешенную, т, е. систему, результирующий вектор и результирующий момент которой (относительно всякого центра приведения) равны нулю.  [c.103]

Если обозначим через / внутренние силы, то твердое тело S можно рассматривать как систему свободных материальных точек, находящуюся под действием сил F ъ /. Так как и система сил F (но нредположеиию) и система сил / (в силу их свойства как внутренних сил, н. 3 предыдущей главы) (векторно) эквивалентны нулю, то система, составленная из сил F ъ f, будет, в частности, эквивалентна системе сил, из которых каждая равна нулю. Но если бы каждая точка тела S подвергалась действию силы, равной нулю (т. е. была бы свободна от действия каких бы то ни было сил), то система находилась бы, очевидно, в равновесии. Поэтому на основании теоремы предыдул1 его пункта она будет находиться также в равновесии под действием сил F и /, эоивалентных системе, состоящей только из сил, в отдельности равных пулю.  [c.109]

Почти все изложенные ниже результаты могут быть применены для определения контактных характеристик взаимодействующих тел и силы сопротивления их относительному перемещению по крайней мере на двух масштабных уровнях. Макромасштаб - это некоторая расчётная схема реального сопряжения. На этом уровне изучается распределение номинальных напряжений внутри номинальной области контакта в зависимости от макроформы и свойств контактирующих тел и условий взаимодействия. Микромасштаб - это модель элементарного (на данном структурном уровне) фрикционного контакта (например, контакт двух неровностей). Это позволяет использовать полученные результаты для расчёта контурных и фактических площадей контакта, сближения тел под нагрузкой, распределения контактных и внутренних напряжений при качении и скольжении. Кроме того, представленные в этой главе результаты позволяют определить те области изменения параметров, при которых учёт трения и несовершенной упругости приводит к существенному изменению конечных зависимостей по сравнению с упрощёнными постановками.  [c.131]

Исследования последних лет (их краткий обзор дан в работе [102 ]) былп направлены на поиски новых способов нагружения целых и разрезных кольцевых образцов и разработки аппарата для оценки и анализа полученных результатов. Кольцевые образцы испытываются наружным и внутренним давлением, что позволяет оценить их свойства при растяжении — сжатии в направлении армирования, на изгиб сосредоточенными силами — для оценки сдвиговых свойств намоточных материалов. Кольца с прорезями используются для изучения прочности при межслойном сдвиге. Для получения полного комплекса механических характеристик намоточных материалов освоены новые схемы нагружения разрезных колец. Учет особенностей механических свойств современных армированных пластиков привел к пересмотру методов испытаний сегментов кольца.  [c.207]

При достаточной степени дисперсности С. все их свойства определяются в основном природой их внутренней поверхности раздела (частица—среда).Однако при дальнейщем уменьшении радиуса частиц (при г<0,1 в области от 0,1 до 0,01 /I) сама природа поверхностного слоя начинает изменяться удельная поверхностная энергия <Г12 и другие молекулярно-стати-стич. величины, характеризующие некомпен-сированность молекулярных сил в пограничном слое, начинают резко изменяться. Поверхность раздела изменяется при этом качественно, и мы переходим в область коллоидной дис-пер с-ности (С. постепенно превращается в коллоидный раствор с рядом специфически новых свойств, см. фигуру). Дальнейшее уменьшение г, приближающегося к нижнему физич. пределу—молекулярным разделам (г , ), и само понятие о поверхности раздела в обычном статистич. представлении теряет смысл. Это схематически и представлено на фигуре, где г отложен по оси абсцисс, а величина поверхности раздела или лучше всей поверхностной энергии дисперсной системы 01 -812110 оси ординат. В коллоидной области развитие поверхностных  [c.238]


Главным свойством масел, характеризующим их смазывающую способность, является вязкость, или внутреннее трение жидкостей, т.е. свойство сопротивляться сдвигу одного слоя жидкости относительно другого слоя. За осно .ную р е-личину, характеризующую вязкость, принята так называемая динамическая вязкость р, числорюе значение которой оп-ределя (,т экспериментально. По закону Нывтона, который связывает силу жидкостного трения с другими параметрами движущихся слоев нсидкости.  [c.166]

Примечания I. После переноса слагаемою 2Л/са х и (ЬЮб ) и суммы (А ш+ ш X к ) - 21 ту Гу X [и> X гу] в (1.106 ) в правую часть уравнений со знаком минус их можно трактовать как кориолисову силу инерции центра масс и главный момент относителыго точки О кориолисовьгх сил инерции, приложенных к несущему телу. Наличие этих слагаемых в уравнениях движения несущего тепа показывает, что кориолисовь[ силы инерции не обладают свойством внутренних сил в системе несущее тело - носимые тела.  [c.44]

В начале удара, когда происходит соприкосновение шара с плоскостью, начинается деформация шара и плоскости. При этом внутренние силы совершают отрицательную работу, вследствие чего кинетическая энергия шара уменьшается н в некоторый мо мент скорость его становится равной нулю. Вслед за этим моментом благодаря упругим свойствам ша ра и плоскости начинается восстановление их формы, которое сопровождается положительной работой внутренних сил. Если в конце удара шар и плоскость полностью восстановят свою форму или, как говорят, шар и плоскость абсолютно упруги, то величина положительной работы внутренных сил будет равной величине отрицательной работы этих сил. В результате полная работа внутренних сил за время удара равна нулю. В этом случае кинетическая энергия шара после удара будет такой же, как его кинетическая энергия до удара.  [c.131]

Однако условия равновесия твердого тела справедливы и для равновесия систелгы сочлененных тел, что вытекает из свойства внутренних сил системы. Действительно, после освобождения каждого тела системы от наложенных на него внешних и внутренних связей и замены их соответствующими реакциями на тело будут действовать часть внешних сил системы (Г , ] = 1, 2,. . .. . т) и часть внутренних сил (F], / = 1,2,. . ., р), образующих уравновешенную систелху сил. Представим главный вектор и главный момент относительно точки  [c.260]

Для чистых металлов излучательная способность зависит главным образом от состояния поверхности. Если металлы имеют чистую поверхность, они имеют малую излучательную способность и значительную селективность излучен1я. Селективность излучения их уменьшается с увеличением шероховатости и степени окислеиия поверхности. Если поверхность тела покрывается слоем вещества, сильио поглощающего лучистую энергию, то излучательная способность такого тела увеличивает я. Можно, наоборот, уменьшить излучательную способность тела, если еп) поверхность покрыть пленкой вещества, обладающего большой отражательной способностью. При этом необходимо иметь в виду, что при малой толщине пленки излучающие свойства тела зависят не только от свойств пленки, но также II от свойств вещества, на которое эта пленка наносится. Толщина оксидных пленок на металлах зависит от температуры и увеличивается со временем. Следовательно, в зависимости от. этих факторов изменяется и излучательная способность металлов. Излучение всех тел зависит от температуры. С увеличением температуры излучение увеличивается, так как увеличивается внутренняя энергия тела.  [c.348]

Примером безмоментных оболочек являются сосуды, изготовленные методом намотки. Расчет таких конструкций основан на нитяной модели материала, согласно которой внутреннее давление и силы, приложенные по краям оболочки, воспринимаются армирующими волокнами и вызывают в них только растягивающие напряжения. Такие конструкции и методы их расчета рассмотрены в работах Рида [67], Росато и Грове [6в], Шульца [75]. Современные методы расчета сосудов давления и корпусов двигателей изготовленных методом намотки [24, 42], учитывают изгиб оболочки, вызванный соответствующим характером нагружения, а также несимметрией распределения геометрических параметров или упругих свойств материала по толщине. Изгиб-ные напряжения, предсказываемые в этом случае теорией малых деформаций, могут оказаться значительными. Однако рассматриваемые оболочки обычно деформируются таким образом, что в процессе нагружения остаются безмоментными. На безмоментной теории, предусматривающей большие деформации системы, основан метод определения равновесных форм армированных оболочек. Обзор исследований, посвященных оптимизации безмоментных оболочек из композиционных материалов, приведен в работе Ву [901.  [c.148]

Улучшение эксплуатационных характеристик органоминеральных композитов путем аппретирования минерального наполнителя силанами объясняется либо уплотнением структуры полимера (теория фиксированного слоя), либо достижением внутреннего равновесия в процессе отверждения при условии более мягкой поверхности раздела (теория деформируемого слоя) (гл. 1). Изучая влияние силановых аппретов на поверхность наполнителей, Плюдеман [37] показал, что более эффективные силаны (если степень их воздействия оценивать по улучшению механических свойств композитов) стимулируют выделение большего количества тепла при отверждении смол. Эти данные согласуются с теорией фиксированного слоя, находящегося на модифицированной силанами поверхности раздела в полимерных композитах.  [c.200]

Хотя мы не знаем внутреннего строения жидкостей, тем не менее мы не можем сомневаться в том, что частицы, из которых они состоят, материальны и что поэтому законы равновесия применимы к жидкостям в такой же мере, как и к твердым телам. Действительно, осяовное свойство жидкостей, и притом — единственное, отличающее их от твердых тел, заь лю-чается, в том, что все части пх уступают малейшей силе и могут перемещаться друг относительно друга со всей возможной легкостью, независимо от того, какая связь и взаимодействие существуют между этими частями. Так как это свойство может быт . легко выражено математически, то отсюда следует, что законы равновесия жидкостей не требуют o o6oii теории и представляют собой лишь частный случай общей теории статики. С этой именно точки зрения мы и будем их рассматривать но мы полагаем, что нам следует начать с изложения различных принципов, которые применялись до сих пор в этой части статики, которую обычно называют гидростатикой, с тем, чтобы дополнить анализ принципов статики, ь оторый мы дали в первом отделе.  [c.234]

Изменение энергии и физико-механических свойств в процессе пластической деформации. Пластическая деформация — это процесс возникновения и необратимого движения дислокаций, вакансий и других несовершенств кристаллической решетки и их взаимодействия между собой и с другими дефектами. Вследствие этого внутренняя энергия пластически деформированных металлов и сплавов возрастает. Величина дополнительной энергии (скрытая энергия наклепа) равна той доле механической энергии деформации, которая накапливается в материале и остается в нем по окончании действия внешнних сил.  [c.25]

Пример 2. Возьмем N нестационарных неизометрических движений вязких сжимаемых жидкостей, приближающихся по своим физическим свойствам к идеальному газу. Предположим, что источники массы и энергии в жидкостях отсутствуют, а величина теплового эквивалента кинетической энергии движущихся жидкостей пренебрежимо мала по сравнению с их внутренней энергией. Допустим, далее, что работы объемных сил и сил трения можно не учитывать и перенос лучистой энергии, диффузионная теплопроводность, диффузия и термодиффузия не имеют места.  [c.129]


Смотреть страницы где упоминается термин Силы внутренние, их свойства : [c.79]    [c.71]    [c.9]    [c.244]    [c.128]    [c.171]    [c.304]    [c.319]    [c.22]    [c.664]   
Краткий курс теоретической механики (1995) -- [ c.263 , c.264 ]



ПОИСК



Свойства внутренние

Сила внутренняя



© 2025 Mash-xxl.info Реклама на сайте