Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплопроводность диффузионная

В книге приводятся результаты теоретического и экспериментального исследования процесса термодиффузионного разделения в газовых смесях в стационарных и нестационарных условиях. Рассматриваются различные методы описания явления термодиффузии в газовых смесях. Описываются принципы стационарного и нестационарного метода экспериментального определения термодиффузионной постоянной. Рассматривается влияние термодиффузии и диффузионной теплопроводности на кондуктивный и конвективный перенос тепла. Найден вклад неидеальности компонент газовой смеси в характеристики процесса термодиффузионного разделения. В приложении приводятся экспериментальные и расчетные данные по термодиффузионной постоянной бинарных смесей газов.  [c.208]


При температуре ниже дебаевской следует учитывать другие механизмы переноса, в частности перенос фононами, вклад которых до сих пор не рассматривался. Фононы обеспечивают теплопередачу в неметаллических веществах, где нет газа свободных электронов. В металлах и сплавах при низких температурах вклад фононов в теплопроводность оказывается заметным. Возникает поток фононов, взаимодействующих с другими фононами, электронами и атомами примесей, причем каждому такому акту соответствует своя длина свободного пробега. При высоких температурах средняя длина свободного пробега при электрон-фононном взаимодействии значительно больше, чем при фонон-фононном. Таким образом, по отношению к электронам решетка находится во внутреннем тепловом равновесии и рассмотренная выше термо-э.д.с. диффузионного происхождения оказывается основной. При низких температурах длина свобод-  [c.272]

Для реальных значений коэффициента теплопроводности различных веществ число Прандтля не достигает тех больших значений, для которых мог бы иметь место этот предельный закон. Такие законы, однако, могут быть применены к конвективной диффузии, описывающейся темн же уравнениями, что и конвективная теплопередача, причем роль температуры играет концентрация растворенного вещества, роль теплового потока — поток этого вещества, а диффузионное число Прандтля определяется как Ро = v/D, где Д — коэффициент диффузии. Так, для растворов в воде и сходных жидкостях число Pd достигает значений порядка 10 , а для растворов в очень вязких растворителях — 10 и более.  [c.301]

При выводе формулы (34. 44) предполагалось, что, потеря энергии при одном соударении мала, т. е. что замедление можно рассматривать как непрерывный процесс. В этом предположении может быть развита приближенная теория замедления для сред с малым I и слабой зависимостью Xs. от энергии. Эта теория называется теорией возраста. В возрастном приближении процесс замедления описывается уравнением диффузионного типа, сходным с уравнением теплопроводности  [c.308]

Используя понятие о теплоте переноса, можно получить более наглядное, чем (8.65), выражение для потока энтропии. Представим поток теплоты в виде двух членов потока за счет теплопроводности и диффузионного переноса  [c.224]

Уравнение энергии для двумерного (плоского) движения вязкого теплопроводного газа (при отсутствии диффузионной теплопередачи и излучения) имеет вид  [c.74]


При этом компоненты газа, диффундирующие вследствие наличия градиента концентрации, перенося энтальпию, являются источниками потока энергии, который при определенных условиях может превысить поток теплоты за счет теплопроводности. Кроме переноса вещества, обусловленного переменной концентрацией, образуются диффузионные потоки, вызванные градиентами температур (термодиффузия) и давления (бародиффузия). Эти две составляющие диффузионного потока не имеют существенного значения, и поэтому при изучении теплопроводности в потоке газа, обтекающем тело, их не учитывают. Ионизацию воздуха при числах < 20 25 можно также не учитывать.  [c.702]

При выполнении обшивки летательного аппарата из некаталитических материалов (предельный случай бесконечно медленной каталитической реакции коэффициент каталитической реакции k - Q) концентрация атомов в диссоциированном пограничном слое на стенке остается такой же, как и на внешней границе слоя. В этом случае поток атомов за счет диффузии равен нулю, диффузионная теплопередача отсутствует и тепловой поток к поверхности возникает только за счет теплопроводности.  [c.704]

В жидкостях такого рода преобразования не дают существенных выгод. При этом следует иметь в виду, что для жидкостей из-за малого коэффициента диффузии и относительно большой теплопроводности (Le 1 ) <3 ) обычно оправдано приближение, не учитывающее диффузионного переноса энергии. Применимость этого заключения требует конкретных оценок для тех или иных условий.  [c.41]

Первое слагаемое правой части уравнения (13.38) определяет перенос теплоты теплопроводностью, второе — конвекцией и третье — молекулярной диффузией. Плотность теплового потока в однокомпонентной движущейся среде определяется уравнением (13.20), следовательно, в движущейся смеси появляется диффузионная составляющая теплового потока.  [c.198]

Время т, пренебрежимо мало по сравнению со временем теплового воздействия на продукт [23], а это приводит к дифференциальному уравнению параболического типа. Налагающиеся на основной процесс эффекты термодиффузии и диффузионной теплопроводности можно учесть, изме-н. . эффективные значения X и а, что будет являться предметом коррекции этих величин.  [c.45]

В условиях движения среды, когда образуется динамический пограничный слой и при разности концентраций на внутренней его границе и вне его, можно выделить диффузионный пограничный слой (аналогично тепловому пограничному слою). Толщина пограничного слоя зависит от скорости газов и при скорости, например, 1 лг/сек составляет бд==> = 0,05 мм. Можно положить, что массоперенос через диффузионный пограничный слой в направлении, нормальном к стенке, происходит в пограничном слое только путем молекулярной диффузии (по закону Фика). Подобно тому совместную передачу тепла в движущейся однокомпонентной среде теплопроводностью и конвекцией называют конвективным теплообменом, совместный молекулярный и макроскопический перенос массы называют конвективным массообменом.  [c.178]

По сравнению с углеводородным топливом водород может обеспечить более высокие удельные скорости нагрева объема. Это позволит существенно упростить камеру сгорания и, что важно для образования NOi, уменьшить время пребывания водорода в камере. Более высокая скорость горения обусловлена большей диффузионной подвижностью и теплопроводностью водорода.  [c.87]

Карбидные фазы состава МеС, являясь предельно насыщенными углеродом в твердом состоянии, не растворяют углерод. В связи с тем, что карбиды в меньшей мере взаимодействуют с металлами при высоких температурах по сравнению с углеродом, представляется целесообразным покрывать контактные поверхности графита карбидами для создания диффузионного барьера между графитом и металлами. Благодаря этому открываются широкие возможности повышения коррозионной и эрозионной устойчивости при высоких температурах такого материала, как графит, отличающегося высокой прочностью при 2000—2500° С, высокой теплопроводностью и хорошей обрабатываемостью.  [c.424]


При выводе (4.69) сделан ряд допущений, часть из которых использовалась и в предыдущем изложении. Так, при составлении теплового баланса элемента канала не учитываются диффузионный перенос тепла и теплопроводность вдоль канала, а также диссипативное рассеивание энергии внутри химически реагирующего потока.  [c.149]

Диффузионные потоки каждой компоненты рассчитываются либо в строгой постановке задачи [Л. 2-9], либо приближенно, причем учитывается, что сумма всех диффузионных потоков равна нулю. Коэффициенты вязкости и теплопроводности смеси получены с помощью формул, приведенных в 2-3.  [c.173]

В настоящей главе изложены теоретические основы диффузионного приближения с учетом селективности излучения и анизотропии объемного и поверхностного рассеяния [Л. 29] проанализировано влияние формы индикатрисы рассеяния на коэффициент диффузии излучения и указаны условия, при которых этот коэффициент принимает простейшие выражения как частный случай диффузионного приближения рассмотрено приближение радиационной теплопроводности.  [c.145]

Однако диффузионное приближение является более широким методом по сравнению с приближением радиационной теплопроводности, поскольку оно не исходит из необходимости выполнения условия локального радиационного равновесия. Поэтому оба эти приближения не следует смешивать. Приближение радиационной теплопроводности рассмотрено и использовано в[Л. 17, 22, 29, 64, 70, 86, 346].  [c.162]

Таким образом, для полного излучения температурное поле в среде в приближении радиационной теплопроводности описывается дифференциальным уравнением (5-76) с граничными условиями (5-77). В качестве граничных условий может быть задано либо поле температур на поверхности Ту,, либо поле полной поверхностной плотности результирующего излучения рез. Все особенности уравнений радиационной теплопроводности в отношении заранее неизвестных коэффициентов La (t=l, 3), m и а уже обсуждались при рассмотрении общего случая диффузионного приближения.  [c.166]

Система уравнений, описывающая поставленную задачу, может быть составлена исходя из любого рассмотренного в ч. 2 дифференциального приближения. Все приближения приводят в конечном счете к одному и тому же нелинейному дифференциальному уравнению, которое для каждого приближения отличается лишь видом осреднения интенсивности излучения, фигурирующего в различных функционалах. Применительно к рассматриваемой задаче было использовано диффузионное приближение, как наиболее близко увязывающееся с процессом молекулярной теплопроводности.  [c.390]

В формулах (3)—(8) I, L — длина трубного пучка и теплообменника N — число труб в пучке — охлаждаемая поверхность и живое сечение пучка — входная температура потока Т — температура стенки X, у — теплопроводность, теплоемкость и удельный вес аргона Ga — расход аргона Nu — тепловой критерий Нуссельта Ре, Ре — тепловые и диффузионные критерии Пекле соответственно.  [c.276]

При малых содержаниях паров металлов в парогазовой смеси тепловым сопротивлением пленки конденсата, сопротивлением фазового перехода и контактным термическим сопротивлением можно пренебречь. Скорость конденсации определяется скоростью диффузионной доставки молекул к охлаждаемой поверхности 41—43]. Температуру пленки при конденсации паров щелочных металлов можно принимать практически равной температуре охлаждаемой поверхности, так как пленка конденсированного металла имеет высокую теплопроводность. Давление пара у поверхности пленки конденсата принимается равным давлению насыщения пара при температуре пленки. Плотность диффузионного потока пара, участвующего в процессе массообмена, выражается соотношением [41]  [c.239]

Удельный тепловой поток в бинарных смесях с учетом диффузионной теплопроводности (диффузионный термоэффект) можно записать так  [c.260]

Процессы переноса. В процессах горения могут реализовываться достаточно большие градиенты макротемператур и концентраций компонент в несущей газовой фазе, что, в отличие от 4 гл. 1 и гл. 4, может привести к пеобходпмости учета макроскопической теплопроводности фаз и диффузионных потоков в газе. Поток тепла за счет теплопроводности газа будем определять в соответствии с законом Фурье )  [c.405]

Теплопроводность батарейных датчиков определяется теплопроводностью обоих термоэлектродов >1,1 и и заполнителя Ха, а также соотношением сечений этих электродов. Рассмотрим возможность изменения Хд при изготовлении и эксплуатации наиболее применимых батарейных датчиков, коммутация которых осуществляется гальваническим покрытием отдельных отрезков термоэлектродной проволоки материалом с контрастными потермо-э. д. с. свойствам (спиральные, слоистые, решетчатые датчики) [8, 44]. На рис. 3,8,6 приведена схема такого датчика. Тепловой поток с плотностью д последовательно проходит три слоя. В первом слое толщиной х не вырабатывается сигнал — он служит для механической и электрической защиты термоэлектродов и выполняется из материала, заполняющего пространство между термоэлектродами во втором слое толщиной к — 2х. Основным элементом второго слоя является термоэлектрод 1 сечением f . Каждая вторая ветвь термоэлектрода покрыта слоем другого термоэлектродного материала 2 сечением имеет термоэлектрические свойства, близкие к материалу покрытия [7]. Места переходов от одиночного к биметаллическому электроду находятся на гранях среднего слоя и играют роль горячих либо холодных спаев дифференциальной термобатареи, сигнал которой и определяет плотность теплового потока д. Пространство между электродами занимает заполнитель 3 сечением /з. Если датчик диффузионно проницаем, то в /з входит и сечение капилляров. Наконец, теплота проходит снова через слой заполнителя толщиной х.  [c.71]


Физическая постановка задачи о диффузионно-тепловой неустойчивости (в дальнейшем ДТН) ламинарных пламен впервые была дана в работе Льюиса и Эльбе [53], где на основе представлений об избытке энтальпии за фронтом пламени предсказывалась неустойчивость фронта при числе Льюиса— Семенова Le = Dp p/A-< 1 (в дальнейшем ДТН-1), в то время как при Le 1 считалось, что фронт пламени устойчив. Противоположная гипотеза была высказана в [541 диффузионно-тепловая неустойчивость пламен возможна только при Le > I (в дальнейшем ДТН-2). Механизм неустойчивости, предложенный Зельдовичем, принципиально отличается от механизма Льюиса и Эльбе и состоит в том, что при Le> 1 участки фронта ламинарного пламени, выпуклые в сторону несгоревшей горючей смеси, ускоряются вследствие превышения притока энергии (в результате диффузии горючего) над стоком теплоты в результате процесса молекулярной теплопроводности. Вогнутые же участки по аналогичной причине имеют отток энергии, что в конечном счете замедляет их распространение. В результате фронт пламени становится неустойчивым.  [c.331]

При специальных условиях могут быть существенными так называемые перекрестные эффекты (диффузионный термоэффект, термодиффузия). В приведенных соотношениях %, Вт/(м-К), — теплопроводность вещества D, мУс, — коэф-  [c.7]

Для изготовления подложек наиболее перспективны стали, титан, алюминий. Последний требует разработки паст с температурой вжигания не выше 550 °С. Аустенитные стали имеют недостаточную теплопроводность. Низколегированные малоуглеродистые стали нуждаются в защите от коррозии и окисления непокрытых участков подложки при обжиге покрытия и вжигаиии элементов гибридных интегральных схем (ГИС). Лучшие результаты по окалиностойкости и прочности сцепления с диэлектрическим покрытием дают диффузионное алитирование и хромалитирование. Кроме придания необходимых поверхностных свойств, диффузионный слой влияет на некоторые объемные свойства. Так, у образцов стали 0.8кп толщиной 1 мм при двухстороннем алитировании на глубину 0.1 мм КТР в интервале 50—400 °С возрастает с 13.2-10 до 13.8-10 K , при глубине  [c.140]

Пример 2. Возьмем N нестационарных неизометрических движений вязких сжимаемых жидкостей, приближающихся по своим физическим свойствам к идеальному газу. Предположим, что источники массы и энергии в жидкостях отсутствуют, а величина теплового эквивалента кинетической энергии движущихся жидкостей пренебрежимо мала по сравнению с их внутренней энергией. Допустим, далее, что работы объемных сил и сил трения можно не учитывать и перенос лучистой энергии, диффузионная теплопроводность, диффузия и термодиффузия не имеют места.  [c.129]

При металлическом типе связей характерными являются относительно высокая пластичность и большие силы сцепления, т. е. большая прочность кристалла (наряду с этим — высокие электропроводность и теплопроводность). Говоря о значительной пластичности металлов, имеем в виду так называемую атермическую пластичность, т. е. пластичность, обусловленную не высокими температурами (близкими к температуре плавления металла). Термическая пластичность, Связанная с высокими температурами, имеет диффузионную природу она обнаруживается не толёко у металлов такая пластичность не сопровождается большой прочностью. Материалы с ионными связями обладают очень большой прочностью при сжатии, низким сопротивлением разрыву и практически характеризуются отсутствием пластичности эти материалы имеют очень низкие электропроводность и теплопроводность. Для ХруйКого мгновенного разрушения таких материалов достаточно мельчайших трещин на поверхности. Однако имеются керамики, у которых прочность при растяжении доходит до 14 кПмм , а прочность при сжатии — до 280 кГ/мм .  [c.225]

Величина кг зависит от скоростей химических реакций и диффузионного выравнивания концентраций. Если скорость химических реакций намного ниже скорости диффузионного переноса, состав смеси в пределе будет замороженным (одинаковым) и Xe-> Kf. При весьма высоких скоростях химических реакций состав смеси будет находиться в локальном равновесии в соответствии с Г в данной области, и теплопроводность такой смеси будет определяться суммой А/+1г, которая может на порядок превышать величину Я/. Таким образом, для химически реагирующих систем понятие- теплофизических свойств включает не только характеристики данного вещества, но и кинетику и тепловые эффекты реакций. Эффективная теплоемкость системы N2O4 в предположении, что компоненты смеси --- идеальные газы, определяется из формулы [1.3]  [c.17]

На основе такой общей постановки проведено обобщение и уточнение теоретических методов расчета радиационного теплообмена. Изложены дифференциальные методы расчета теплообмена излучением дифференциально-разностное и диффузионное приближения, приближение радиационной теплопроводности, тензорное приближение и приближение Милна — Эддингтона. Далее на этой же о снове рассмотрены интегральные уравнения теплообмена излучением и методы алгебраического приближения. Рассмотренные теоретические методы проиллюстрированы решением ряда задач, имеющих практическое значение.  [c.89]

Формула (5-2) аналогична выражению вектора диффузионного потока частиц. Подставляя выражение для Uq в (5-2), Росселанд пришел к градиентной формуле, аналогичной выражению Фурье для вектора потока теплопроводности  [c.143]

Приближение радиационной теплопроводности является частным случаем диффузионного приближения, когда в каждой точке среды имеет место локальное радиационное равновесие. Впервые это приближение было предложено Росселандом [Л. 22, 346] и сформулировано им в виде уравнения (5-4). Это приближение получило большое распространение в астрофизических задачах для исследования переноса излучения в недрах звезд, где оптическая толщина весьма велика и состояние среды и излучения оказываются близкими к локальному радиационному равновесию. В астрофизической и иностранной литературе по теплофизике понятия диффузионного приближения и приближения радиационной теплопроводности довольно часто отождествляют между собой. Россе-ланд в своей работе, впервые сформулировав общее уравнение диффузионного приближения, рассматривал его для частного случая состояния среды и излучения, близкого к термодинамическому равновесию, которое получило название приближения радиационной теплопроводности, Именно для этого приближения им рекомендованы окончательные расчетные формулы (5-2) и (5-4) и дана закономерность осреднения коэффициента поглощения по всем частотам (5-3),  [c.161]

Таким образом, температурное поле в среде для приближения радиационной теилопроводности описывается уравнением (5-65) с граничными условиями (5-66), согласно которым на стенке может быть задано либо поле температур Ej. либо поле Е Так же как в диффузионном приближении, тиближение радиационной теплопроводности содержит величины неизвестных заранее коэффициентов Лгг(г = 1, 2, 3), т я определяемых с той или иной степенью точности. Все вышесказанное об этих коэффициентах для случая диффузионного приближения остается справедливым и для приближения радиационной теплопроводности.  [c.163]


Рейнольдса, Эйлера и Фруда и безразмерная функция распределения скорости среды во входном сечении камеры горения Во, Ей, S — радиационные критерии Больцмана, Бугера и Шустера — поглощательная способность стенок камеры сгорания (поверхность стенок является серой и изотропно отражающей) Рг = =-vi/ai — критерий Прандтля, определяемый по температуре и составу газовой смеси во входном сечении камеры горения Ргд=Г1/Ог1— диффузионный критерий Прандтля для тех же условий T plTi — отношение температуры охлаждающей стенку среды к температуре горючей смеси на входе в камеру горения lIRph — критерий теплообмена потока с охлаждающей стенку средой (Rf — термическое сопротивление стенки поверхности нагрева, Xi — теплопроводность газовоздушной смеси на входе в камеру) Ar = EIRTi — критерий Аррениуса  [c.415]

Далее следует сказать, что под величинои X в уравнении (1-16) понимается некоторая эквивалентная теплопроводность смеси пара и газа с учетом влияния диффузионных процессов на полный теплообмен в слое насыщенного газа.  [c.30]

Большое значение имела, в частности, работа Г. А. Варшавского по диффузионной теории горения, опубликованная в 1945 г. [Л. 8-3]. Нельзя не отметить, что более поздние работы иностранных исследователей [Л. 8-2, 4, 5, 12 и 18], повторяя в основном схемы и метод расчета Г. А. Варшавского, дают в отдельных деталях более грубые расчеты. В некоторых из этих работ не учитываются такие обстоятельства, как зависимость коэффициента теплопроводности от температуры, стефановский поток и др.  [c.191]

На основе изложенного может быть сформулировано обобщенное уравнение энергии с учетом различных видов теплообмена (лучеиспускание, конвекция, теплопроводность), связанных с движением среды, наличием источников и стоков тепла, нестаци-онарности режима и работы объемных сил и сил трения. Задача о лучистом теплообмене, таким образом, является частным случаем этой весьма широкой постановки вопроса. Определение отдельных функций, входящих в общее уравнение энергии, строго математическим путем пока представляет непреодолимые трудности. В частности, при решении задач по лучистому теплообмену необходимо знать температурное поле и поле коэффициентов поглощения. Первое из них является результатом одновременно протекающих процессов тепловыделения и теплоотдачи, связанных с процессами горения и движения среды, т. е. с явлениями как кинетического, так и диффузионного характера, чаще всего не поддающихся точному математическому описанию.  [c.198]

С физической точки зрения теплоотдача конвекцией представляет двустадийный процесс, поскольку характер движения жидкости или газа у поверхности нагрева и в отдалении от нее принципиально различен. Как известно, движение у поверхности в пограничном слое толщиной 6 носит всегда ламинарный характер, тогда как в отдалении оно может быть ламинарным, но чаще всего турбулентным. Перенос тепла в пограничном ламинарном слое сводится к молекулярному диффузионному процессу— теплопроводности (> ) тогда как в потоке, движущемся турбулентно носит характер молярной тепловой диффузии, который, однако, тоже возможно характеризовать некоторым эквивалентным коэффициентом теплопроводности. Если весь поток движется ламинарно, то — = 1 и поэтому весь процесс теплообмена  [c.270]


Смотреть страницы где упоминается термин Теплопроводность диффузионная : [c.274]    [c.65]    [c.166]    [c.274]    [c.404]    [c.48]    [c.175]    [c.225]    [c.138]    [c.35]    [c.216]   
Тепломассообмен (1972) -- [ c.31 , c.41 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте