Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сдвиг межслойный

Связующие эпоксидные — Технологические характеристики 49, 50 Сдвиг межслойный при растяжении или сжатии призматических или кольцевых образцов с надрезами — Схема нагружения 215  [c.508]

Для армированных материалов типа стеклопластиков, углепластиков и боропластиков важно определить по отдельности модули jii и Ц2 — сдвига в плоскости пластины и межслойного сдвига. Это можно сделать, испытав на кручение два плоских образца е различными отношениями 6/а.  [c.309]

Малая жесткость по отношению к межслойному сдвигу приводит к тому, что кроме прогиба, определяемого по обычной теории изгиба ( 3.8), появляется дополнительный прогиб, связанный со сдвиговой деформацией. Соответствующая приближенная теория была дана еще Тимошенко, последующие уточнения мало что к ней прибавили. Мы изложим идею этой теории на простом примере балки на двух опорах, загруженной сосредоточенной силой Р посредине (z = Z/2). Прогиб в точке приложения силы / состоит из двух частей / = /i + /2, величина /1 находится из обычной теории изгиба. По способу, изложенному в 3.8, мы легко находим  [c.706]


Создание межслойных связей. Радикальное увеличение сопротивления межслойному сдвигу и поперечному отрыву связано с созданием межслойных связей. Технологически это осуществляется разными путями. В ра- ботах [90, 91] показаны методы возможного увеличения прочности между слоями композиционных материалов. Исследование прошитых волокнами  [c.9]

Материалы с переменной плотностью по толщине применяют в конструкциях, нагружаемых перпендикулярно плоскости армирования [38]. У композиционных материалов, изготовленных по схеме 1.2, ж, наружные слои обладают высокой прочностью и жесткостью на изгиб и кручение, а внутренние — достаточным сопротивлением межслойному сдвигу. При наличии волокон, искривленных только в направлении х, изменение угла наклона О приводит к улучшению одних характеристик материала и ухудшению других (рис. 1.3). Комбинированная укладка прямых и искривленных волокон в направлении х (см. рис. 1.2, д, е) позволяет регулировать характеристики материала за счет их объемного соотношения.  [c.13]

Рис. 1.3. Зависимость модулей упругости (/) и межслойного сдвига (2) композиционных материалов, образованных системой двух нитей, от угла искривления волокон основы Рис. 1.3. Зависимость <a href="/info/487">модулей упругости</a> (/) и межслойного сдвига (2) композиционных материалов, <a href="/info/574373">образованных системой</a> двух нитей, от угла искривления волокон основы
Для ортотропных материалов с известными направлениями главных осей упругой симметрии модуль сдвига можно вычислять по значениям 45 и V45. Этот метод обычно используют для определения модуля сдвига в плоскости укладки арматуры. Применение его для оценки значений межслойных модулей сдвига ограничено вследствие необходимости изготовления плит большой толщины, из которых получают образцы.  [c.45]

Задача определения модулей межслойного сдвига окончательно не решена до настоящего времени. Сложность ее решения обусловлена тем, что межслойные модули сдвига, как правило, определяются на стержнях, где трудно реализовать условия чистого сдвига. Обычно для этой цели используется изгиб коротких балок или кручение стержней с различным отношением параметров их поперечного сечения. Первый способ прост в реализации, но не позволяет получать достоверных сведений вследствие сложного напряженного состояния в образце при малом отношении //Л (см. с. 41). Приближенные зависимости, которые исполь-  [c.45]


Анализ данных табл. 5.17 позволяет сопоставить сопротивление материалов действию растягивающих, сжимающих и изгибающих нагрузок. При испытании на изгиб разрущение образцов происходило в зоне растягивающих напряжений. Разрушения вследствие межслойного сдвига или концентрации напряжений в местах приложения сосредоточенных нагрузок  [c.159]

Материалы, армированные только нитевидными кристаллами, обладают также высокими прочностными свойствами. Как следует из табл. 7.1, введение в матрицу даже сравнительно небольшого объема нитевидных кристаллов повышает ее прочностные характеристики в плоскости их укладки в несколько раз, причем прочность при растяжении и межслойном сдвиге линейно зависит от объемного содержания нитевидных кристаллов (рис. 7.4). Разброс значении прочности при растяжении и сдвиге не превышал 10 % (число испытанных образцов на каждую точку — не менее восьми).  [c.207]

Сопротивление межслойному сдвигу пластиков на основе углеродных волокон. — Механика полимеров, 1977, № 3, с. 445—451.  [c.219]

Содержание стекловолокна, об. % Пористость, об. % Связующее, отвердитель Сопротивление межслойному сдвигу, КГС/ММ2 Долговечность, число циклов  [c.110]

А. Прочность при межслойном сдвиге....................... 154  [c.106]

Заманчивне возможности упрощенных формулировок и решений с давних пор побуждали исследователей, работающих в области механики конструкций, попытаться описать особенности трехмерного поведения пластин в рамках двумерной классической теории. Все более широкое использование слоистых композитов в авиационных конструкциях за последнее десятилетие стимулировало практический интерес к теориям пластин, в которых учитываются деформации поперечного сдвига, межслойные напряжения и влияние толщины. Ниже будет сделано несколько коротких замечаний о современных вариационных формулировках в этих задачах, чтобы проиллюстрировать мощь вариационных методов, открывающих новые пути построения теорий, которые учитывали бы указанные факторы.  [c.416]

Складывая Д и Д, находим, что первая, основная часть прогиба увеличивается пропорционально кубу длины, тогда как / . зависит от длины в первой степени. Отсюда следует, что, испытывая на изгиб балки разной длины, можно выделить величину Д и, следовательно, найти модуль межслойного сдвига ц. Фактически для стеклопластиков получить таким способом надежные результаты не удалось, мелкие экспериментальные ошибки неизбежным образом накладываются и вносят большую погрешность. Пока что, как нам представляется, единственный надежный способ определения ц состоит в испытании на кручение двух стержней прямоугольного сечения с разными отношениями сторон. Способ обработки, описанный в 9.12, позволяет определить по отдельности модуль сдвига в плоскости листа и модуль межслойного сдвига. Так, для однонаправленного углепластика было найдено, что модуль межслойного сдвига равняется 230 кгс/мм тогда как модуль сдвига в плоскости слоя 570 кгс/мм  [c.707]

Раанирение сферы использования пространственно-армированных материалов. вызывает необходимость доведения до промышленности надежных численных оценок физических и прочностных свойств этих материалов. Книга содержит обширный экспериментальный материал. Главное внимание уделено межслойному сдвигу и поперечному отрыву. Улучшение показателей по этим характеристикам и по вязкости разрушения подтверждено экспериментами, что позволяет говорить о возможности раси1ирения областей применения пространственно-армированных композиционных материалов.  [c.3]

Одним 113 главных преимуществ ориентированных стеклопластиков является высокая удельная прочность в направлении армирования. Практическая реализация этого иреимуще-ства ограничена трудностями, обусловленными относительно низким сопротивлением ориентированных стеклопластиков межслойному сдвигу = 25 50 МПа, "= 2000 2500 МПа) и поперечному отрыву (/ i= 20- 55 МПа), а также сравнительно малой жесткостью ( П 25- 60 ГПа) даже в направлении укладки волокон. Несущая способность тонкостенных конструкций, работающих на устойчивость, в результате сравнительно низкой жесткости стеклопластиков часто теряется задолго до достижения напряжениями предельных значений [56, 80]. 1 1рн создании толстостенных изделий указанные отрицательные особенности начинают проявляться более ярко, так как возрастает число технологических факторов, определяющих эти особенности [6].  [c.6]


Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

Наибольшее число методов создано для определения модуля сдвига в плоскости укладки арматуры, значительно меньше методов — для изучения межслойного сдвига. Наиболее хорошо отработан метод определения на плоских образцах модуля сдвига в плоскости пластины Оху Определять О у можно различными способами из опытов на растяжение или сжатие полосок, при испытании пластин в шарнирном че-тырехзвеннике, нагружении квадратных пластинок на чистое кручение. Самым простым и надежным способом является испытание на кручение квадратных пластинок. Этот способ позво-  [c.42]

Характеристики слоя с прямолинейным расположением волокон, входящие в зависимости табл. 4.1, определяли на однонаправленных и ортогонально-армированных стеклопластиках с укладкой волокон 1 3 н 1 5. Установлено хорошее совпадение расчетных, вычисленных по приведенным формулам, и экспериментально измеренных значений упругих констант. При этом оказалось, что модуль межслойного сдвига для слоистых стеклопластиков больше по величине, чем модуль сдвига в плоскости укладки арматуры Оху- Для материала с укладкой волокон I 3 Охг 4250 МПа, Ох у = 3100 МПа, а для материалов с укладкой 1 5 — 4150 МПа,  [c.104]

Сравнение значений прочности (МПа) на отрыв и межслойный сдвиг трехмерноармированных и слоистых композиционных материалов  [c.165]

Зависимость прочности при сдвиге от указанного технологического фактора четко не обнаруживается — в случае равномерного распределения волокон имеет место заметное повышение ее значений, а при неравномерной укладке — некоторое снижение (см. табл. 6.6, тип 1 и 2). Наибольшее влияние на эту характеристику оказывает тип матрицы. Композиционные материалы с пироуглеродной матрицей имеют значительно большие показатели сдвиговой прочности, чем материалы на основе пековой матрицы (см. тип 1А и 3). Усложнение трехмерной структуры армирования способствует повышению их межслойной  [c.178]

Модуль упругости и прочность композиционных материалов в направлении волокон практически не изменяются при использовании вискери-зованной арматуры вместо обычной. Для материалов, изготовленных методом прессования, препрегов, способ вискернзации волокон не оказывает заметного влияния на значения модулей межслойного сдвига. Этот вывод подтверждается сопоставлением экспериментальных значений межслойного модуля сдвига углепластиков, полученных на основе вискеризован-ных волокон из газовой фазы и из аэрозоля (см. 1 абл. 7.2).  [c.208]

Изменение содержания нитевидных кристаллов в материале приводт к линейному изменению модуля межслойного сдвига во всем исследованном диапазоне значений Ркр- Проч ность при межслойном сдвиге возрастает с увеличением объемного содержания нитевидных кристаллов до 5 %, дальнейшее увеличение р1кр (см. рис. 7.8, а) практически не влияет на изменение значений Rx2 Прочность при изгибе в направлении волокон малочувствительна к изменению объемного содержания кристаллов до 5 %, а при Ркр > 5 % происходит некоторое снижение прочности. Модуль упругости в направлении основных волокон во всем исследованном диапазоне изменения Р(5р практически не меняется (см. рис. 7.8, б). Это естественно, так как 7 " и для композитов, армированных вискеризованными волокнами, определяются в основном содержанием и свойствами самих волокон.  [c.213]

Материалы на основе углеродных волокон, вискеризованных нитевидными кристаллами карбида кремния, и эпоксидных, а также полиамидных связующих описаны в работах [19, 20, 25]. Использование указанных волокон в материалах, как показано в работе [102], приводит к резкому увеличению прочности на сдвиг, причем возрастание сдвиговой прочности пропорционально объемному содержанию нитевидных кристаллов. Влияние содержания нитевидных кристаллов на некоторые свойства при изгибе углепластиков, изготовленных на основе эпоксидного связующего Эпон 828, характеризуют данные, приведенные в табл. 7.7. Для межслойной сдвиговой прочности эти данные во многом условны. Они получены методом трехточечного изгиба образцов при //л = 3 и не характеризуют фак-  [c.215]

Испытания вискеризованных композиционных материалов, так же как и трехмерноармированных, на межслойный сдвиг связаны со значительными трудностями. Даже при испыта-  [c.217]

Формулы (69) и (70) совпадают с соотношениями (60) и (61). Следовательно, мы можем заключить, что в принятых предположениях приближенная теория (КТП) является точной. Напомним эти предположения (i) слои являются упругими моноклинными (или имеет место моноклинная неоднородность, такая, что ij= ij(l) и ei = ei l), (ii) напряжения не зависят от X я у, причем аз = О, а 04 и as постоянны. Примерами могут служить равномерный изгиб и/или кручение, равномерное мембранное растял<енне, чистый межслойный сдвиг, а также комбинация этих элементарных нагружений.  [c.51]


В этом случае выделяются два элемента один—для оиределе-ния прочности при поперечном растяжении, второй — для определения прочности при межслойном сдвиге. Модель при нагружении композита в поперечном направлении позволяет получить выражение для определения средней деформании в матрице как функции средней деформации композита, величину которой можно че-посредственно сравнить с допустимой деформацией матрицы или, используя диаграмму напряжений, с ее прочностью. Аналогичные соображения приводят к таким же выводам и в случае межслойного сдвига. Подобный анализ называется методом учета деформации. Он применяется для расчета прочности композита при поперечном растяжении и при межслойном сдвиге [13, 14].  [c.50]

К косвенным методам определения адгезионной прочности на поверхности раздела относятся испытания материала на прочность при межслойном сдвиге и растяжении в поперечном направлении. Данные о прочности композитов при межслойном сдвиге-приведены в работах [ЙО, 27]. Установлено, что микроструктура волокна с учетом его модуля упругости и метода обработки поверхности влияет на межслойную сдвиговую прочность материалЭ и, следовательно, на адгезионную прочность. Зависимость прочности композита при межслойном сдвиге от модуля упругости необработанного волокна изучена Гоаном и Прозеном 27].  [c.57]

Изучалась температурная зависимость прочности ко<мпозита при межслойном сдвиге. Как видно из рис. 34, межслойная сдвиговая прочность остается почти неизменной в интервале температур от —54 до 82 °С. Когда температура достигает 177 °С, прочность снижается почти до нуля. Следует отметить, что адгезионная связь, судя по результатам измерения прочности при межслойном сдвиге, продольном сжатии и статическом изгибе, не чувствительна к нагреву до температуры, вдвое меньшей, чем температура отверждения композита. При более высокой температуре адгезия на поверхности раздела постепенно ослабевает. Испытания на предел проч1ности при продольном сжатии и межслойном сдвиге указывают на аналогичное поведение.  [c.76]

Рис. 41. Параметры и за1Висимости, используемые при разработке композитов с заданной адгезионной прочностью на поверхности раздела [17]. а — показатель расслоения Фцз2 /12 беспористого эпоксидного композита с волокнами Modmoг-l б — экспериментальная зависимость энергии поперечного удара от прочности при межслойном сдвиге О для различных полимерных волокнистых композитов. Рис. 41. Параметры и за1Висимости, используемые при разработке композитов с заданной <a href="/info/136540">адгезионной прочностью</a> на <a href="/info/26134">поверхности раздела</a> [17]. а — показатель расслоения Фцз2 /12 беспористого эпоксидного композита с волокнами Modmoг-l б — экспериментальная зависимость энергии <a href="/info/6067">поперечного удара</a> от прочности при межслойном сдвиге О для различных полимерных волокнистых композитов.
Вагнер [104], а затем Дитц и Пеовер [31] разработали элект-рохимичеекий метод для оценки смачиваемости различных графитовых волокон с обработанной поверхностью. При этом фиксировались изменения площади, смачиваемой электролитом, и устанавливалась взаимосвязь таких изменений с прочностью композита при межслойном сдвиге. Метод основан на том, что металлический проводник, контактирующий с электролитом, несет поверхностный электрический заряд величина которого определяется природой растворителя, электролита, материала электрода и падением напряжения на поверхности раздела значение пропорционально площади граничной области [74]. Электрод состоял из отдельных графитовых волокон. Определялась не величина а ее изменение в зависимости от потенциала Е  [c.254]

Так как композиты, армированные необработанными графитовыми волокнами, имели низкую прочность при межслойном сдвиге вследствие плохой адгезионной связи волокна со смолой, было необходимо добиться лучшего взаимодействия матрицы с наполнителем. Применение силанового покрытия на термообработанном [78, 93] или окисленном волокне [47] оказалось неэффективным и не позволило повысить прочность при межслойном сдвиге. Однако при окислении поверхности волокна в сочетании с ее термообработкой даже без применения аппретов прочность композитов при межслойном сдвиге значительно возрастает [41, 48, 63, 68, 78, 88]. Окисление графитовых волокон азотной кислотой способствует увеличению их удельной поверхности и, как было показано в разд. I, созданию кислой Поверхности. В углепластиках с волокном НМС-50 существует зависимость между их прочностью на сдвиг и величиной удельной поверхности воло кон (рис. 14) [88]. В результате окисления волокна повыщается также и прочность на растяжение в поперечном направлении.  [c.267]


Смотреть страницы где упоминается термин Сдвиг межслойный : [c.61]    [c.78]    [c.6]    [c.8]    [c.46]    [c.136]    [c.165]    [c.166]    [c.208]    [c.209]    [c.214]    [c.50]    [c.75]    [c.80]    [c.256]    [c.292]    [c.293]    [c.106]   
Методы статических испытаний армированных пластиков Издание 2 (1975) -- [ c.119 , c.142 ]



ПОИСК



Адгезионная прочность при вытягивании волокна из отливки смол межслойном сдвиге

Межслойный сдвиг и срез

Межслойный сдвиг и срез в кольцах

Особенности испытаний на межслойный сдвиг

Прочность композитов на / сдви при межслойном сдвиге

Прочность межслойного сдвига — Определение методом изгиба цельных

Прочность межслойного сдвига — Определение методом изгиба цельных колец

Прочность при межслойном сдвиге

Сдвиг межслойный при растяжении

Сдвиг межслойный при растяжении или сжатии призматических или кольцевых образцов с надрезами — Схема

Сдвиг межслойный при растяжении нагружения

Упругие межслойном сдвиге

Упругие постоянные при межслойном сдвиге



© 2025 Mash-xxl.info Реклама на сайте