Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Холодный спай

Для большей точности измерения концы холодного спая помещаются в термостат (на рис. 89 не показано).  [c.114]

Термопары очень широко применяются для измерения температуры в самых различных условиях. В этой главе будут рассмотрены лишь наиболее важные аспекты термометрии, использующей термопары. Термопара остается основным прибором для измерения температуры в промышленности, в частности в металлургии и нефтехимическом производстве. Прогресс в электронике способствовал в последнее время росту числа применений термометров сопротивления, так что термопару уже нельзя считать единственным и важнейшим прибором промышленного применения. Преимущества термометра сопротивления по сравнению с термопарой вытекают из принципа действия этих устройств. Термометр показывает температуру пространства, где расположен его чувствительный элемент, и результат измерения мало зависит от подводящих проводов и распределения температуры вдоль них. Термопара позволяет найти разность температур между горячим и холодным спаями, если измерена разность напряжений между двумя опорными спаями. Эта разность напряжений возникает в температурном поле между горячим и холодным спаями. Разность напряжений идеальной термопары зависит только от разности температур двух спаев, однако для реальной термопары приходится учитывать неоднородность свойств электродов, находящихся в температурном поле она и является основным фактором, ограничивающим точность измерения температуры термопарами.  [c.265]


Рис. 6.1. Распределение потенциала вдоль проволоки термопары, изготовленной из электродов А и В п имеющей горячий спай в области постоянной температуры Т . Электроды присоединены к одинаковым проводам С в области холодного спая при постоянной температуре То. Проводники С присоединены к детектору в области постоянной температуры Г]. Полагая, что величина Ес(То—>Т ]) одинакова для обоих проводников С, получаем измеренную э. д. с. [ а—Яв](7 о—>Т г)- Электроды Л и В проходят через одно и то же температурное поле. Рис. 6.1. Распределение потенциала вдоль проволоки термопары, изготовленной из электродов А и В п имеющей <a href="/info/276530">горячий спай</a> в области постоянной температуры Т . Электроды присоединены к одинаковым проводам С в области холодного спая при постоянной температуре То. Проводники С присоединены к детектору в области постоянной температуры Г]. Полагая, что величина Ес(То—>Т ]) одинакова для обоих проводников С, получаем измеренную э. д. с. [ а—Яв](7 о—>Т г)- Электроды Л и В проходят через одно и то же температурное поле.
Еав(Т(г Т2) зависит только от Го и Г2, если термоэлектрод однороден в области температурного градиента. В той области термоэлектрода, где имеется неоднородность, возникает небольшая добавочная термо-э.д.с. Поскольку термо-э.д.с. зависит от температуры почти линейно, неоднородность проявляется в большей мере в районе максимума температурного градиента. Это означает, что термо-э.д.с. неоднородной термопары становится функцией ее размещения, а не только разности температур горячего и холодного спаев.  [c.270]

Важное преимущество термопары типа В состоит в том, что ее термо-э.д.с. практически равна нулю вплоть до 100 °С и поэтому нет необходимости следить за температурой холодного спая. С другой стороны, термо-э.д.с. сплава, содержащего всего 6 % родия, очень чувствительна к его концентрации и поэтому термопара типа В менее стабильна, чем типы S и R.  [c.282]

Рис. 6.4. Конструкция эталонной платинородиевой термопары. 1 — электроды термопары 2 — сварное соединение электродов 3 — рекристаллизованная АЬОз без разрывов 4 — пластмассовая изоляция 5 — к холодному спаю. Рис. 6.4. Конструкция эталонной платинородиевой термопары. 1 — электроды термопары 2 — <a href="/info/2408">сварное соединение</a> электродов 3 — рекристаллизованная АЬОз без разрывов 4 — пластмассовая изоляция 5 — к холодному спаю.
Рис. 6.15. Трехпроводная система компенсирующих проводов для термопары Р1—13 % НЬ/Р1 [17]. 1—горячий спай 2 — медные провода 3 — измерительный прибор 4 — холодный спай. Рис. 6.15. <a href="/info/314287">Трехпроводная система</a> компенсирующих проводов для термопары Р1—13 % НЬ/Р1 [17]. 1—<a href="/info/276530">горячий спай</a> 2 — <a href="/info/63788">медные провода</a> 3 — <a href="/info/39646">измерительный прибор</a> 4 — холодный спай.

Рис. 8-11. Зависимость к. п. д. идеального преобразователя от температуры горячего и холодного спаев. Рис. 8-11. Зависимость к. п. д. идеального преобразователя от температуры горячего и холодного спаев.
Повышение к. п. д. термоэлектрогенератора путем снижения температуры холодных спаев достигается в космических условиях с помощью дополнительных излучающих ребер с нанесенным покрытием (е>0,85).  [c.195]

Рис. 8-12. Зависимость к. и. д. солнечного термоэлектрогенератора от температур горячих и холодных спаев и коэффициента К. Рис. 8-12. Зависимость к. и. д. солнечного термоэлектрогенератора от температур горячих и холодных спаев и коэффициента К.
I — электроизолятор 2 — сферический приемник излучения 3 — проводящий конус 4 — плоскость горячего спая термопары 5 — плоскость холодного спая термопары б — опорное устройство 7 — сечение А-А через опоры термопары 8 — опора типа п 9 — опора типа р.  [c.197]

При подключении измерительного прибора к термопарной цепи возможны две схемы 1) с разрывом одного из термоэлектродных проводов (рис. 9.2, д) 2) с разрывом холодного спая термопары (рис. 9.2, б). Анализ влияния на измеряемую термо-ЭДС Еав((, о) подключения в термопарную цепь третьего электрода (С) показывает, что для исключения возможного искажения измеряемой термо-ЭДС в термопарной цепи необходимо и достаточно термостатировать  [c.174]

Принцип измерения теплового потока этим методом заключается в том, что разность температуры в центре и на краю фольги А7 прямо пропорциональна тепловому потоку, воспринятому константановой фольгой. Для измерения ДТ к центру константановой фольги припаивают тонкий медный провод 3. Таким образом получается дифференциальная термопара, составленная из медного провода 3, константановой фольги 1 и медного блока 2, горячий и холодный спаи которой образованы соответственно в центре и на периферии фольги. Сигнал этой термопары (термо-ЭДС) е пропорционален АГ и, следовательно, значению измеряемого теплового потока с плотностью q. Для случая постоянной плотности теплового потока по поверхности фольги эта связь установлена аналитическим путем  [c.279]

Схема термобатареи показана на рис. 14.10,6. Для более полного поглощения излучения рабочие ( горячие ) спаи термопар 1 зачернены либо электролитическим способом, либо путем напыления сажи или окислов металлов. Холодные спаи термопар -образуются приваркой их свободных концов к тонким металлическим пластинкам 3, установленным на слюдяном кольце 4 и расположенным вне зоны облучения.  [c.291]

Схема термоэлектрического генератора показана на рис. 8.54. На горячем (с температурой Ti) спае двух полупроводниковых материалов (вверху расположен полупроводник р-типа, внизу — полупроводник п-типа) электроны переходят из валентной зоны в зону проводимости и перемещаются к холодному спаю с температурой Та, а затем переходят в примесную зону полупроводника /э-типа. В результате в цепи протекает электрический ток по направлению часовой стрелки. На стыке полупроводников п- и р-типов развивается термо-ЭДС  [c.576]

Холодный спай термопары при точных измерениях должен быть тщательно термостатирован при известной с достаточно высокой точностью температуре ta. Для этой цели используется либо сосуд Дьюара с тающим льдом, либо специальный полупроводниковый холодильник с автоматическим регулированием температуры — так называемый нуль-термостат.  [c.113]

Термо-ЭДС термопары определяется алгебраической суммой контактных разностей потенциалов горячего и холодного спаев при обходе замкнутой цепи в одном направлении  [c.113]

Чтобы по измеренному значению изм(<, io) определить температуру горячего спая t, необходимо знать температуру холодного спая и располагать градуировочной зависимостью термопары E=E t, fo=0° ). Если температура холодного спая в опытах была равна О °С, то t непосредственно определяют по градуировке, представленной в виде таблицы, графика или аппроксимирующей формулы. Если же о О°С, то поступают  [c.113]


Пользуясь этой зависимостью по температуре холодного спая, сначала находят соответствующее ей значение термо  [c.159]

Поправка на температуру холодного спая может быть введена и с помощью градуировочных таблиц в том же порядке. Результаты расчетов заносят в протокол.  [c.160]

В интервале в МПТШ-68 определяется термопарой из платины и сплава 10 % родия с платиной, градуированной при 630,74 °С, а также в точках затвердевания серебра и золота с использованием квадратичной интерполяционной формулы. Разработаны требования к величинам термо-э. д. с. термопары в реперных точках, которым этот прибор должен удовлетворять при воспроизведении шкалы. В гл. 6 будет показано, однако, что эти требования часто неоправданно строги. Было найдено, что если один из электродов термопары изготовлен из чистой платины, а другой содержит родий в пределах от 10 до 13%, то шкала воспроизводится удовлетворительно. Главная проблема при использовании термопар состоит в их недостаточной воспроизводимости. Причины этого рассматриваются в гл. 6 и хотя они понятны, их воспроизводимость очень трудно улучшить. Проблема в том, что измеряемая термо-э. д. с. возникшая вследствие разности температур спаев термопары, зависит не только от этой разности температур, но и от однородности проволоки электродов термопары. Если электроды не вполне однородны, то измеренная термо-э. д. с. начинает зависеть от конкретного распределения температуры вдоль проволок от горячего до холодного спаев. Найдено, что по этой причине для термопар из Р1 —10% НМ/Р в интервале 630—1064 °С достижимая точность не превышает 0,2 °С. Современные требования к точности измере-  [c.55]

Классический опорный спай термопары имеет температуру о °С, получаемую в тающем льде. Этот способ обычен в лабораторных условиях, хотя и требует ряда предосторожностей для получения высокой точности. Влияние растворенных минеральных примесей в водопроводной воде редко изменяет точку льда более чем на —0,03°С, однако лучше применять дистиллированную воду. Для приготовления ледяной ванны толченый лед из холодильника помешается в широкогорлый сосуд Дьюара и заливается дистиллированной водой, пока лед не будет покрыт полностью. Холодные спаи термопар помещаются в стеклянные пробирки, погружаемые в ванну на глубину около 15 см, и в пределах нескольких милликельвинов их температура оета-ется равной 0°С в течение десятков часов. Иногда рекомендуется для улучшения теплового контакта заполнять пробирки минеральным маслом до уровня воды в ледяной ванне. Делать это не обязательно, и, кроме того, возникает возможность проникновения масла внутрь изоляции к горячим частям термопары за счет капиллярных эффектов. Число холодных спаев, диаметр проволок и их теплопроводность могут существенно повлиять на характеристики ледяной ванны. Вполне достаточно погрузить одну пару медных проводов диаметром 0,45 мм на глубину 15 см, но 20 таких же проводов в одной и той же стеклянной трубке дадут погрешность около 0,02 °С. Рис. 6.19 II табл. 6.5 иллюстрируют некоторые характеристики ледяной ванны.  [c.304]

При определении теплофизических характеристик необходимо на тщательно обработанные торцевые поверхности эталонных стержней нанести слой исследуемого покрытия. Сечение стержня должно быть не менее 35 X Х35 мм (для соблюдения одномерности потока) при длине его 50 мм (эта длина удовлетворяет требованию бесконечности стержня, так как на противоположном торце за время зксргеримента температура меняется не более чем на 0,001°С). В плоскости раздела покрытие— стержень помещают термопару. Стержни с нанесенным покрытием собирают, как показано на рис. 6-9. Между ними устанавливают тонкий нагреватель с вклеенной термопарой. Холодные спаи термопар удалены на противоположный конец стержня, температура которого практически не меняется в течение опыта. Для улучшения теплового контакта эту сборку зажимают струбцинами. Эксперимент проводят следующим образом одновременно включают питание нагревателя и лентопротяжный ме-ханиз.м потенциометра.  [c.138]

На рис. 8-16 показана схема маломощного изотопного термоэлектрогенератора SNAP-3 с поверхностью корпуса, имеющей покрытие с высокой степенью черноты и достаточной для охлаждения холодного спая. Типичные схемы для более мощных термоэлектрогенераторов показаны на рис. 8-17 [160].  [c.197]

В термоэлектрических преобразователях осуществляется преобразование температуры в термоэлектродвижущую силу (термо-ЭДС) их действие основано на термоэлектрических явлениях, открытых Зеебеком (1821 г.). Термо-ЭДС в цепи, состоящей из двух разнородных проводников — термоэлектродов, зависит от температуры мест их соединения — спаев (/ и о) и от рода термоэлектродов (А и В) зависимость становится однозначной при постоянной температуре одного из спаев обычно температура холодного спая поддерживается постоянной и равной нулю, т. е. /о = сопз1 = 0 °С тогда уравнение преобразования принимает вид  [c.141]

Теплопроводность батарейных датчиков определяется теплопроводностью обоих термоэлектродов >1,1 и и заполнителя Ха, а также соотношением сечений этих электродов. Рассмотрим возможность изменения Хд при изготовлении и эксплуатации наиболее применимых батарейных датчиков, коммутация которых осуществляется гальваническим покрытием отдельных отрезков термоэлектродной проволоки материалом с контрастными потермо-э. д. с. свойствам (спиральные, слоистые, решетчатые датчики) [8, 44]. На рис. 3,8,6 приведена схема такого датчика. Тепловой поток с плотностью д последовательно проходит три слоя. В первом слое толщиной х не вырабатывается сигнал — он служит для механической и электрической защиты термоэлектродов и выполняется из материала, заполняющего пространство между термоэлектродами во втором слое толщиной к — 2х. Основным элементом второго слоя является термоэлектрод 1 сечением f . Каждая вторая ветвь термоэлектрода покрыта слоем другого термоэлектродного материала 2 сечением имеет термоэлектрические свойства, близкие к материалу покрытия [7]. Места переходов от одиночного к биметаллическому электроду находятся на гранях среднего слоя и играют роль горячих либо холодных спаев дифференциальной термобатареи, сигнал которой и определяет плотность теплового потока д. Пространство между электродами занимает заполнитель 3 сечением /з. Если датчик диффузионно проницаем, то в /з входит и сечение капилляров. Наконец, теплота проходит снова через слой заполнителя толщиной х.  [c.71]


Термопары градуируются до и после закладки в измерительные блоки по реперным точкам (точки таяния льда и кипения воды) и в термостатах при нулевой температуре холодного спая. Применяемые медь-константиновые термопары дают высокую стабильность и воспроизводимость результатов в диапазоне температур —100...+ 100 °С.  [c.121]

Опытные образцы должны плотно, без воздушных зазоров, прилегать к поверхностям нагревателя и холодильников (контактно тепловое сопротивление должно быть пренебрежимо малым). Плотность контакта достигается чистотой обработки указанных поверхностей, для этого могут также применяться специальные нажимные устройства. Толщина образцов мала по сравнению с диаметром, но тем не менее часть теплоты может уходить через боковую поверхность образцов, и поле температур будет отличаться от поля температур плоских образцов неограниченных размеров. Во избежание этого предусмотрена боковая тепловая защита образцов с помощью изоляции из асбоцемента, теплопроводность которого при 50 °С равна 0,08 Вт/(м-К). Измерение перепадов температуры в образцах осуществляется хромель-алюмелевыми термопарами, уложенными в канавках, выфрезерованных непосредственно на поверхностях корпуса электрического нагревателя и холодильников. Спаи измерительных термопар находятся в центральной части образцов. Для контроля поля температур нагревателя предусмотрены дополнительные термопары, спаи которых находятся ближе к боковым поверхностям. Кроме того, на наружной поверхности бокового слоя защитной изоляции заложена термопара, служащая для оценки тепловых потерь. Все термопары имеют общий холодный спай, он термостатируется с помощью нуль-термостата.  [c.127]

Температура поверхности по длине опытной трубы является практически постоянной. Она изменяется по окружности трубы, так как в этом направлении переменны толщина пограничного слоя и местный коэффициент теплоотдачи. Температура поверхности трубы измеряется 12 хромель-алюмелевыми термопарами, равномерно размещенными по ее длине и периметру. Горячие спаи термопар впаяны в сверления диаметром 0,5 мм, сделанные в стенке трубы в различных точках по периметру. Электроды термопар выведены наружу через полые камеры токоподводящих фланцев и трубчатые стойки к механическому переключателю. Общий для всех термопар холодный спай термостатируется при температуре окружающего воздуха. Термоэлектродвижущая сила термопар измеряется цифровым вольтметром 10 147  [c.147]

Для измерения температуры поверхности опытной трубы установлены четыре хромель-копелевые термопары. Горячие спаи термопар приварены с внутренней стороны в среднем сечении трубы в разных точках по периметру, так как восходящий поток жидкости в сосуде имеет поперечное направление. Холодный спай, общий для всех термопар, помещается в рабочем объеме сосуда с термостатированной жидкостью. Следовательно, термопары измеряют избыточную температуру стенки опытной трубы относительно окружающей среды. Термо-ЭДС термопар измеряется цифровым вольтметром типа Щ1413. Нахождение по термо-ЭДС температуры осуществляется по градуировочной табл. 3.1.  [c.152]

Холодный спай является общим для всех термопар и термостатируется при температуре воздуха в помещении. Следовательно, в опытах измеряется избыточная температура поверхности пластин, т. е. непосредственно температурный напор. Термо-ЭДС термопар измеряется цифровым вольтметром Щ1413. Определение температуры по термо-ЭДС термопар осуществляется по табл. 3.1. Температура воздуха в помещении измеряется ртутным термометром.  [c.155]

Ех—термо-ЭДС, отсчитываемая от 0°С АЕх—термо-ЭДС, отсчитываемая от температуры холодного спая, равной /ж воздуха ( АЕх — измеряемые значения) Е .е — термо-ЭДС, соответствующая температуре холодного спая, т. е. температуре воздуха /ж- Для используемых в работе термопар из хромеля и алюмеля получена следующая тарировочная за висимость между температурой и термо-ЭДС i=25Д—0,149Д2.  [c.159]

Для измерения температуры стенки опытной трубки в десяти точках ее боковой поверхности приварены горячие спаи (корольки) хромель-алюмелевых термопар. Эти термопары имеют один общий холодный спай, помещенный во входную камеру. Таким образом, измерение температуры стенки трубки и температуры воздуха на выходе из опытного участка в данной работе проводится относительно температуры воздуха на входе, т. е. относительно комнатной температуры /к, измеряемой ртутным термометром.  [c.168]

Для измерения температуры используются хромель-копелевые термопары, холодные спаи которых термостати-рованы при комнатной температуре, измеряемой лабораторным ртутным термометром. Координаты горячих спаев термопар, приваренных к поверхности трубки-нагревателя, приведены в табл. 4.4.  [c.173]

Измерение температуры поверхности опытной трубки и температуры жидкого хладона производится хромель-копе-левыми термопарами. Холодные спаи термопар помещаются в нуль-термостат. ЭДС термопар измеряется цифровым вольтметром Щ1413 поочередное подключение термопар осуществляется через переключатель 6. Избыточное давление насыщения в цосуде измеряется манометром 10.  [c.181]


Смотреть страницы где упоминается термин Холодный спай : [c.115]    [c.529]    [c.193]    [c.193]    [c.194]    [c.196]    [c.197]    [c.229]    [c.275]    [c.603]    [c.175]    [c.113]    [c.113]    [c.164]    [c.174]    [c.177]   
Диаграммы равновесия металлических систем (1956) -- [ c.104 ]



ПОИСК



ТЭГ с пониженной температурой холодных спаев

Холодный спай компенсация



© 2025 Mash-xxl.info Реклама на сайте