Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несовершенства кристаллической решетки

Прочность конструкционных материалов повышается благодаря воздействию нагрузок, создающих эффективные препятствия для движения несовершенств кристаллической решетки. При этом создаются структуры с повышенной плотностью закрепленных и равномерно распределенных по всему объему дислокаций.  [c.391]

Основными несовершенствами кристаллической решетки металлов считают точечные, линейные и поверхностные.  [c.16]

В поликристаллах процесс скольжения затрудняется из-за значительного числа зерен, отличающихся величиной и формой и различно взаимно ориентированных. Во время пластической деформации поликристалла число дислокаций и других несовершенств кристаллической решетки увеличивается происходит перераспределение дислокаций и их концентрирование на границах зерен, фрагментов и блоков мозаики. Поэтому сопротивление деформации у поликристаллов значительно выше, чем у монокристаллов, а пластичность ниже.  [c.81]


ШОВНОЙ подкалкой существенно выше, чем при сварке с сопутствующим охлаждением (рис. 3.11, линия 2). Увеличение электродных потенциалов ф, отмечаемых в околошовных зонах, свидетельствует о большей плотности и несовершенстве кристаллической решетки, обусловленных закалочными процессами и возникновением участков с повышенной термодинамической неустойчивостью.  [c.152]

Рассеиваться фононы могут не только на фононах, но и на точечных дефектах (например, на примесных атомах), на линейных (дислокации), на границах зерен в поликристаллах и т. д. Перечисленные несовершенства кристаллической решетки могут поглощать и энергию, и импульс фонона. Поэтому в кристаллах с большим количеством дефектов длина свободного пробега фононов I мала при любых температурах.  [c.46]

За последние десятилетия в физике твердого тела получило широкое распространение представление о несовершенствах кристаллической решетки, называемых дислокациями. Этим несовершенствам приписывается основная роль при объяснении ряда особенностей поведения реальных кристаллов. Механизм пластической деформации, ползучести, разрушения, рассеяния энергии при циклическом деформировании связываются большинством современных авторов с перемещением дислокаций внутри кристалла. Дислокационные представления используются также для объяснения механизма роста кристалла. Возможные дефекты кристаллической решетки не ограничиваются, конечно, одними дислокациями этим термином называются дефекты особого рода, обладающие совершенно определенными свойствами. Однако дислокационные представления, как оказалось, имеют настолько общий характер, что на их основе можно построить очень большое количество разного рода моделей, объясняющих те или иные свойства реального кристалла, и выбрать из этих моделей те, которые наилучшим образом отвечают опытным данным.  [c.453]

Линейные несовершенства кристаллической решетки имеют размеры, близкие к атомным в двух измерениях и значительную протяженность в третьем. К этому виду дефектов относятся дислокации, простейшими из которых являются краевые, винтовые и смешанные.  [c.30]

Линейные несовершенства кристаллической решетки называются дислокациями. Дислокации можно представить таким образом если надрезать идеальный кристалл и сместить края надреза на величину, кратную периоду решетки, то внутри кристалла у края надреза возникнет некоторое искажение, которое и является дислокацией.  [c.10]

Кроме микрохимической неоднородности, следует иметь в виду и тесно связанную с нею микрофизическую неоднородность, вызываемую локальными скоплениями несовершенств кристаллической решетки, в первую очередь вакансиями и дислокациями.  [c.30]

Из-за несовершенств кристаллической решетки в полупроводниках при наложении электрического поля возникает движение носителей зарядов, и, следовательно, они могут выполнять роль электронных устройств.  [c.278]

Вначале на поверхности соприкосновения металла с водородом за счет термической диссоциации молекулярный водород превращается в атомарный". При постоянной температуре, в соответствии с законом действующих масс, упругость атомарного водорода увеличивается пропорционально квадрату давления. Так как скорость диффузии водорода в металле пропорциональна квадрату давления, то это подтверждает представление о том, что при отсутствии растрескивания только атомарный водород насыщает сталь. Водород диффундирует в сталь как по границам зерен, так и через зерна. Проникновение водорода происходит одновременно с частичной абсорбцией газа металлом. Водород, растворенный в стали, стремится концентрироваться в зонах с максимальной свободной энергией, по границам зерен, во всех несовершенствах кристаллической решетки и т.д.  [c.163]


Водород, находящийся в стали, стремится концентрироваться в зонах с максимальной свободной энергией, т.е. во всех несовершенствах кристаллической решетки, особенно по границам зерен металла. Он остается в протонной форме, если электростатические силы взаимодействия достаточно велики, но может переходить в атомарное и даже молекулярное состояние при увеличении размеров дефектов решетки. Именно поэтому в межкристаллитной прослойке концентрируются продукты реакции и молекулярный водород (рис. 32).  [c.164]

НЕСОВЕРШЕНСТВА КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ  [c.11]

Пластическая деформация поверхностного слоя сопровождается увеличением числа дефектов и искажением кристаллической решетки, изменением субструктуры и микроструктуры металла поверхностного слоя. В металле поверхностного слоя резко возрастает количество дислокаций, вакансий и других несовершенств кристаллической решетки, повышая его напряженность. Взаимодействие полей напряжений дислокаций между собой и с другими дефектами решетки затрудняет движение дислокаций, сопротивление пластической деформации возрастает, металл упрочняется (наклеп, деформационное или механическое упрочнение). Число дефектов в кристаллической решетке поверхностного слоя зависит от степени пластической деформации. Степень деформации, а следовательно, и число дефектов в решетке по глубине поверхностного слоя переменные, они уменьшаются с его глубиной.  [c.50]

На стадии циклического упрочнения появляются первые микротрещины размером 1 мкм за счет накопления несовершенств кристаллической решетки (дислокаций, вакансий) и их движения к фаницам зерен. Эта стадия характеризуется множественными перемещениями дислокаций, повышением их плотности, формированием самоорганизующихся дислокационных структур и упрочнением материала. Стадия циклического упрочнения заканчивается достижением линии необратимой повреждаемости (линии Френча), на которой размер микротрещин сопоставим с размерами зерен материала. Этим заканчивается период зарождения усталостных трещин.  [c.22]

Первый путь заключается в устранении несовершенства кристаллической решетки и приближении ее строения к идеальному, второй — противоположный первому — состоит в увеличении количества структурных дефектов, пересечении дис-  [c.9]

Кроме этого, ширина линии ЯКР растет по мере увеличения степени несовершенства кристаллической решетки, в результате которого градиенты поля соседних узлов решетки различны. Изучение кристаллов показало, что наличие крутильных колебаний вызывает, во-первых, появление дополнительных градиентов  [c.178]

Атомарный водород в силу высокой подвижности (коэффициент диффузии >н = 10 м с) диффундирует в объеме стали, накапливаясь в местах сосредоточения внутренних напряжений и несовершенств кристаллической решетки. Дефекты металла в виде пор являются своеобразными ловушками для атомарного водорода в них происходит его молизация, идущая с образованием плоскостного давления до 400 МПа [2.7].  [c.141]

В идеальном кристаллическом твердом теле расположение всех молекул упорядочено, поэтому оно ведет себя как вполне однородная среда и рассеяния не происходит. Однако отклонения от идеальности из-за несовершенства кристаллической решетки (т. е. наличия незанятых, смещенных или замещенных узлов решетки) могут вызвать рэлеевское рассеяние, хотя рассеяние теплового излучения вследствие таких причин пренебрежимо мало.  [c.130]

Повышенное содержание оксидных включений вызывает смещение потенциала питтингообразования в отрицательную сторону, т. е. повышает склонность сталей к питтинговой коррозии. Повышение чистоты сплава снижает склонность к образованию питтинга. Однако даже чистейшие металлы и сплавы, взятые в виде монокристаллов, могут давать ямки травления. Это указывает на то, что в некоторых условиях отдельные несовершенства кристаллической решетки, как например, дислокации, также могут стать первопричиной возникновения питтинга.  [c.98]

Вторая категория задач по диффузии связана с изучением атомного механизма диффузии, т. е. взаимосвязи между беспорядочным перемещением атомов в соседние места, находящиеся друг от друга на расстоянии нескольких ангстрем, и макроскопическим потоком вещества, измеряемым экспериментально. При этом решение диффузионных задач непосредственно связано с изучением простейших несовершенств кристаллической решетки твердого тела. Эти дефекты оказывают влияние на многие свойства твердых тел, и в свою очередь образование самих дефектов, их концентрация и свойства лучше всего могут быть изучены путем исследования диффузии.  [c.132]

Точечные несовершенства кристаллической решетки появляются как результат ирисутстзия атомов примесей, которые, как правило, имеются даже в самом чистом металле.  [c.20]

Своеобразная трактовка разрезов-трещин как нетривиальных форм равновесия упругих тел с физически нелинейными характеристиками, предложенная В. В. Новожиловым [195, 196], помогает понять возможную причину образования щелевидных областей или пустот. Известно, что при увеличении расстояния между атомами твердого тела меясатомное усилие возрастает до максимума, а затем падает. Равновесие атомов, взаимодействующих по закону нисходящей ветви этой кривой, неустойчиво. Атомный слой, находящийся между двумя другими фиксированными слоями, имеет одно положение неустойчивого и два положения устойчивого равновесия. Поэтому различные причины (тепловые флуктуации, местные несовершенства кристаллической решетки, растягивающие напряжения от внешней нагрузки) создают условия для преодоления потенциального барьера при переходе (через максимум силового взаимодействия) от устойчивого состояния равновесия к неустойчивому. Видимое проявление неустойчивости сводится к перескоку атомного слоя (точнее, его части) в новое положение, что характерно для явления, носящего назваипо устойчивости в большом .  [c.69]


Практически в любом материале, как бы он ни был пластичен при статических испытаниях, может произойти хрупкое разрушение, если в нем при нагружении одновременно образуется множество активных дефектов — несовершенств кристаллической решетки, дислокаций. Такое условие выполняется, например, для взрывной нагрузки. Разрушение в этих случаях состоит из многих, достаточно далеко отстоящих одна от другой трещин, соединяющихся между собой в более или менее правильной последовательности. Отрицательное влияние перечисленных и подобных им факторов усиливается при наблагоприят-ном структурном состоянии материала (крупный размер зерна, наличие наклепа, распад твердого раствора и т. д.). Влиянию режимов термической обработки и дефектов материала на склонность к хрупкому разрушению посвящены работы [55, 103, 106, 116 и др.]  [c.39]

Резкое замедление диффузии водорода при сравнительно низких температурах, по-видимому, можно объяснить несовершенством кристаллической решетки иссле-  [c.127]

Изменение энергии и физико-механических свойств в процессе пластической деформации. Пластическая деформация — это процесс возникновения и необратимого движения дислокаций, вакансий и других несовершенств кристаллической решетки и их взаимодействия между собой и с другими дефектами. Вследствие этого внутренняя энергия пластически деформированных металлов и сплавов возрастает. Величина дополнительной энергии (скрытая энергия наклепа) равна той доле механической энергии деформации, которая накапливается в материале и остается в нем по окончании действия внешнних сил.  [c.25]

Соотношение структурных элементов коксов (сферолнтов, игольчатых частиц и т. д.) заметно влияет на размерную стабильность при высокотемпературном облучении большими флюенсами. Это находит свое объяснение в различии размеров кристаллитов. Радиационные размерные изменения графитов с малыми размерами кристаллитов происходят с большими скоростями, так как наиболее вероятным оказывается захват возникающих дефектов на несовершенствах кристаллической решетки (так называемый гетерогенный процесс образования скоплений).  [c.165]

Прочность является наиболее структурно чувствительным свойством. Только прочность идеальных монокристаллов определяется межатомными силами. Такая прочность реализуется лишь в исключительных случаях, например в нитевидных кристаллах. Обычные кристаллические тела содержат различные несовершенства структуры и их прочность зависит не только от характера междуатомного взаимодействия, но и в большок степени от типа, распределения и количества несовершенств кристаллической решетки.  [c.279]

Начальная стадия возникновения прослоикя химического соединения на границе Т—Ж изучена слабо. Практически в результате шероховатости поверхности паяемого металла, несовершенств кристаллической решетки, зерен и други.ч дефектов химическое соеди-H iHie образуется сначала в отдельных центрах контакта, вдоль межфазной границы с последующим образованием сплошной прослойки, которая затем растет по толщине. Параболический закон роста прослоек химических соединений прн фронтальном их продвижении во многих случаях является первым приближением, так как часто по фроту роста прослойки наблюдаются отде-1ьные ее выступы, растущие со скоростью выше средней.  [c.69]

При деформировании сплавов, применяемых для изготовления тензо-резисторов, кроме геометрических размеров, изменяется их удельное сопротивление. Это объясняется несовершенствами кристаллической решетки (вакансии, внедрения атомов в мешдууздия решетки, дислокации и неупорядоченное расположение атомов). В работе [3] показано, что в упругой области изменение удельного сопротивления линейно связано с деформацией Ар/р В этой же работе показано, что коэффициент тензо-чувствительности удельного сопротивления у] не зависит от температуры и существенно зависит от наклепа, образующегося в результате механической обработки. Независимость от температуры сохраняется лишь в диапазоне температур, при которых отсутствуют структурные превращения.  [c.45]

Медленное статическое деформирование может служить аналогом изотермического нагружения. Определяемый при статическом деформировании модуль упругости в литературе часто называют релаксирующим. Измеряют его при различных, 8 том числе и значительных напряжениях, способных вызвать в металле необратимые изменения. Кроме того, при статическом деформировании практически всегда успевают пройти релаксационные процессы, связанные с дополнительным удлинением растянутого образца при его нагреве до температуры окружающей среды (в процессе быстрого растяжения образец охлаждается), а также с другими явлениями, обусловленными поведением несовершенств кристаллической решетки при деформировании. Разница между адиабатическим и изотермическим модулями связана лишь с первой причиной, тогда как разница между релаксирующим и нерелакси-рующим модулями обусловлена еще и влиянием несовершенств кристаллической решетки — границ зерен, дислокаций, примесных атомов и др., обусловливающих внутреннее трение.  [c.206]

Несовершенства кристаллической решетки растворителя как причины, способствующие возникновению и развитию химшеской микронеоднородности. На всех стадиях производства и переработки металлов и сплавов (при затвердевании, горячей обработке давлением, при холодной пластической деформации, при закалке и т. п.) образуются дислокации [109, 173].  [c.117]

Причины возникновения электрохимической гетерогенности могут быть самыми различными. По современным воззрениям электрохимическая гетерогенность поверхности металла может быть вызвана не только микронеоднородностью структуры металла как, например, различием в составе или ориентации отдельных кристаллов и наличием границ зерен или инородных включений [7,13]. Даже субмикронеоднородность металла как, например, местные несовершенства кристаллической решетки вследствие дислокаций или включения других атомов в решетку основного металла, а также различное энергетическое состояние атомов, зависящее от их полол<ения в решетке на поверхности, следует рассматривать как причины, вызывающие появление электрохимической гетерогенности металла. В предположении, что электрохимическая гетерогенность сплава существует даже на атомном уровне, нет необоснованных допущений, как это иногда высказывается, так как вполне очевидно, что элементарные анодные и катодные процессы относятся к отдельным дискретным атомам кристаллической решетки. Признание того, что электрохимическое растворение металла идет в виде двух независимых, но сопряженных процессов (анодного и катодного), влечет за собой и признание их дифференции в пространстве или во времени. Накопление на поверхности атомов более устойчивого компонента при растворении твердых металлических растворов может служить самым прямым доказательством того, что анодный процесс вполне реально (а не условно) относится к отдельным атомам более активного компонента твердого раствора.  [c.23]

Физический микромеханизм этого явления недостаточно изучен в количественном отношении. Имеются данные, главным образом качественного характера, что вязко-Рис. 138. упругое поведение материала связано с несовершенствами кристаллической решетки, с диффузией атомов и с течением межгранулярных прослоек. Не касаясь этой стороны дела, укажем, что вязко-упругое поведение материала может быть упрощенно охарактеризовано с помощью следующей механической модели (модель тела Фохта ).  [c.224]


Согласно Гуденафу [168], зародыши перемагничивания могут возникать на несовершенствах кристаллической решетки, среди которых основную роль играют границы зерен или пластинчатые выделения. Возможная роль пластинчатых выделений как зародышей перемагничивания была рассмотрена Глотовым [171], который оценил критические размеры этих выделений и высказал предположение, что они связаны с образованием а-РегОз. В более поздней работе Гуденаф [172] показал, что Другие несовершенства структуры, благоприятствующие образованию зародышей обратной намагниченности, — кластеры беспорядочно распределенных магнитных неоднородностей. При этом кластеры сохраняют шпи-нельную структуру, разница в намагниченностях насыщений кластеров и матрицы не превышает 2%, объем кластерной фазы должен составлять /ш от объема матрицы.  [c.139]

Несовершенства кристаллической решетки металла должны оказывать определенное влияние на проницаемость металлических мембран для водорода, так как возможными путями диффузии водорода через металл являются 1) междоузлия кристаллической решетки 2) границы зерен в поликристалличе-ских образцах 3) несовершенства кристаллической решетки внутри зерен. Соотношение между этими видами диффузии устанавливается, очевидно, в каждом конкретном случае в зависимости от состояния металла и условий (температура, давление газообразного водорода вне металла или плотность тока, состав электролита и т. д.). Роль междоузлий и границ зерен в диффузии водорода через железо и сталь обсуждалась ранее (раздел 2.6). Нарушения кристаллической решетки (вакансии, дефекты упаковки, дислокации, малоугольные границы в блоках мозаики и т. д.), вызванные механической или термической обработкой (Металла, могут служить ловушками , коллекторами, для водорода. Это приводит к сильному торможению процесса диффузии водорода через металл [268—270]. Имеющиеся в настоящее время экспериментальные данные недостаточны для того, чтобы надежно разделить влияние на диффузию водорода внутренних напряжений, границ блоков мозаики, дислокаций, вакансий и других нарушений кристаллической решетки [259]. Решение этой задачи осложняется тем, 1что один тип дефектов непрерывным образом может трансформироваться (за счет количественных изменений) в другой.  [c.84]


Смотреть страницы где упоминается термин Несовершенства кристаллической решетки : [c.35]    [c.25]    [c.39]    [c.190]    [c.98]    [c.63]    [c.251]    [c.61]    [c.148]    [c.174]    [c.13]    [c.44]   
Смотреть главы в:

Качество поверхностного слоя и усталостная прочность деталей из жаропрочных и титановых сплавов  -> Несовершенства кристаллической решетки



ПОИСК



Виды несовершенств кристаллической- решетки

Кристаллическая решетка

Кристаллические



© 2025 Mash-xxl.info Реклама на сайте