Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Армирующие волокна —

Система трех нитей. Композиционные материалы, образованные системой трех нитей, содержат арматуру в трех направлениях выбранных осей координат. Наиболее типичные схемы армирования приведены на рис. 1.4. Схемы, как правило, образованы взаимно ортогональными волокнами (рис. 1.4, а, б), но встречаются и с косоугольным расположением (рис. 1.4, в, г). Армирующие волокна могут быть прямолинейными (рис. 1.4, а), иметь заданную степень искривления волокон в одном (рис. 1.4,в) или двух (рис. 1.4, г) направлениях. Содержание волокон и интервал между ними в каждом из трех направлений являются основными параметрами композиционных материалов, которые определяются условиями их применения.  [c.13]


Армирующие волокна слоя, как отмечалось на с. 48, могут иметь случайный или заданный характер искривлений. Случайные отклонения волокон от прямолинейности возникают в результате технологических несовершенств при изготовлении композиционных материалов [22] (см. рис. 3.8). Заданный характер искривлений обу-  [c.60]

Построение деформационной модели базируется на математическом принципе суперпозиции двух идеализированных ее составляющих упругого армирующего каркаса с приведенной матрицей жесткости и упругопластического изотропного связующего с заданной кривой упрочнения. Допущения, принятые при построении первой составляющей модели, характерны для пространственной стержневой системы в расчете учитывается лишь одноименная с каждым из четырех направлений волокон жесткость. Сеть волокон считается размазанной по всему объему куба, принятого за представительный элемент. Таким образом, при равномерно распределенной плотности энергии деформации находится эквивалентная матрица жесткости однородного материала. Обозначив ее индексом а (армирующие волокна), приведем полную запись для нее в системе главных осей упругой симметрии 123  [c.79]

Если армирующие волокна во всех трех направлениях имеют одинаковые упругие свойства, т. е. гп1 — т, то из (5.59) имеем  [c.136]

Армирующие волокна. В процессе создания углеродной матрицы на этапе графитизации углеродные волокна подвержены длительному воздействию режима термообработки, который приводит к некоторым изменениям их кристаллической структуры. Степень изменения последней зависит от свойств волокон [109]. Подтверждением этому служат опыты, проведенные на волокнах Торнел 25 ( = 172 ГПа) и Торнел 40 ( = = 276 ГПа) в инертной атмосфере в течение 10 ч при 2600 °С. В ходе опытов обнаружено существенное повышение степени графитизации волокон — изменение среднего размера кристаллита или высоты пакета параллельно кристаллографической оси. Для волокон Торнел 25 размер кристаллита возрос в 2 раза, а для Торнел 40 в 1,5 раза. Для низкомодульных волокон повышение степени графитизации при длительном воздействии высоких температур было подтверждено повторными опытами. Волокна с более высоким модулем упругости (Торнел 50), выдержанные в течение 24 ч при температуре 2750 С, не проявили явных изменений в структуре.  [c.181]

Кинетика разрушения модельных композиций с модифицированными армирующими волокнами/В. Р. Регель,  [c.219]

В качестве одного из экспериментов, при помощи которых определяют вид функции S k), рассмотрим испытание на сдвиг прямоугольной пластины, ограниченной плоскостями X = О, X = L и У = 0, Y = D, верхняя и нижняя поверхности которой У = О, Z) соприкасаются с абсолютно жесткими плитами. Армирующие волокна первоначально параллельны оси X. Верхняя плита смещается параллельно направлению оси X, в то время как нижняя остается неподвижной. Боковые стороны X = О п X = L свободны от напряжений.  [c.309]


Конструкция кабины и головного модуля высокоскоростного поезда описана Центром развития железнодорожного транспорта [10]. Кабина изготовляется Отделом пластиков Британского центра развития железнодорожного транспорта в Дерби. Обе оболочки кабины изготовлены из трехслойного пластика с крученым армирующим волокном. Внутренняя и наружная стенки изготовляются в одних и тех же формах при по.лучении наружной стенки в форму вставляется 10-сантиметровый вкладыш, а при получении внутренней — вкладыш удаляется. Пространство между двумя стенками заполняется пеной, образуя монококовую конструкцию. Стены выполнены как одно целое с полом, а каркас машинного отделения смонтирован снаружи кабины. Такой метод конструирования позволяет достичь экономии массы приблизительно 30% по сравнению с традиционным конструированием кабин. Большое значение имеет то обстоятельство, что все внутренние поверхности кабины гладкие, так как трубопроводы, кабели и воздуховоды заключены внутри слоистой панели.  [c.186]

В предыдущем обсуждении допускалось, что армирующие волокна в композите обладают четко определенным однозначным разрывным напряжением. Хотя это допущение и может служить хорошим приближением в случае армирования металлами, оно несправедливо для хрупких или любых других волокон, обнаруживающих, как правило, зависимость прочности от длины. В последнем случае прочность композита необходимо оценивать статистическими методами. (Это рассмотрено более детально в гл. 4, написанной Аргоном.)  [c.453]

Рис. 14. Влияние слабых точек в армирующих волокнах на разрушающую нагрузку Р. Рис. 14. Влияние слабых точек в армирующих волокнах на разрушающую нагрузку Р.
Рис. 15. Влияние слабых точек в армирующих волокнах на вклад в вязкость разрушения Ц от вытаскивания волокон для тех же условий, что и на рис. 14, и сравнение с теоретическими оценками по уравнениям (36) и (38) [13]. Рис. 15. Влияние слабых точек в армирующих волокнах на вклад в <a href="/info/23892">вязкость разрушения</a> Ц от вытаскивания волокон для тех же условий, что и на рис. 14, и сравнение с теоретическими оценками по уравнениям (36) и (38) [13].
Разрушение при сдвиге или при растяжении (сжатии) в направлении, перпендикулярном армирующим волокнам  [c.43]

Эти уравнения позволяют рассчитать через упругие константы компонент модуль упругости композита в направлении, перпендикулярном армирующим волокнам,  [c.181]

У волокнистых и слоистых композиционных материалов несущим элементом является армирующее волокно, проволока, фольга (фаза—упрочнитель). Армирующие элементы по своей природе имеют высокую прочность, весьма высокий модуль упругости и, как правило, сравнительно низкую плотность.  [c.5]

Анализируя характер разрушения композиционных материалов, следует отметить, что последний представляет собой ряд последовательных дискретных этапов, каждый из которых отличается от другого перераспределением напряжений между армирующими волокнами.  [c.12]

Распределение напряжений в дискретных волокнах. В том случае, когда армирующие волокна непрерывны, напряжения в них постоянны на всей длине за исключением концевых участков. При малом разбросе частных значений прочности волокон в момент разрушения композиции напряжения почти на всех волокнах достигают их предела прочности. Если же композиция армирована короткими волокнами или усами, то активная роль матрицы состоит в том, чтобы путем пластической деформации передать напряжения волокнам и нагрузить их [45].  [c.13]

Жесткие армирующие волокна воспринимают основные напряжения, возникающие в композиции при нагружении, придавая ей прочность и жесткость в направлении ориентации волокон. Податливая металлическая матрица, заполняющая межволоконное пространство, осуществляет передачу напряжений отдельным волокнам за счет касательных напряжений, действующих вдоль границы раздела волокно—матрица. Для металлической проволоки характерно повышенное удлинение при разрыве (2—5%) по сравнению  [c.34]


Как известно, прочность и жаропрочность легированных сплавов, из которых изготовляют армирующие волокна (проволока), выше, чем указанные свойства нелегированных металлов. Свойства применяемых и новых армирующих материалов приведены в табл. 4 и 5.  [c.44]

КОМПОЗИЦИОННЫХ материалов и деталей из них. Кроме того, позволяет сочетать в одном полуфабрикате армирующие волокна различного состава, что расширяет спектр свойств конструируемых материалов и изделий из них.  [c.46]

Чаще всего нарушение стабильности поверхностей раздела происходит в результате химических реакций между волокном и матрицей, при которых образуются побочные продукты взаимодействия. Поскольку прочность слоя продуктов реакции меньше прочности армирующего волокна, то при нагружении композиционного материала растрескивание этого слоя будет инициировать разрушение волокон и, следовательно, всей композиции.  [c.67]

В качестве исходных материалов используют металлические или металлокерамические порошки, образующие матрицу, и армирующие волокна в виде непрерывных или дискретных волокон, либо в виде металлических сеток. Оборудование, применяемое при изготовлении композиционных материалов, как правило, существенно не отличается от оборудования, применяемого в порошковой металлургии. В основном это разного типа вибрационные столы для уплотнения смеси, прессы, печи для спекания и др.  [c.150]

При получении волокнистых композиционных материалов с использованием энергии взрыва применяют схему продольного распространения фронта детонации. При этом металл матрицы, заполняющий межволоконное пространство, приходит в соприкосновение с нижним слоем металла и соединяется с ним. Волокна в зоне сварки иногда теряют устойчивость и приобретают волнообразную форму чаще всего это явление наблюдается тогда, когда отношение толщины листа материала матрицы к диаметру армирующего волокна меньше единицы. Образовавшиеся гофры можно удалить путем небольшой подкатки полученного листового композиционного материала. Режимы подкатки (температура, степень обжатия) выбирают в зависимости от состава материала. Э. С. Атрощенко и др. было показано, что при использовании в качестве упрочнителя металлических волокон прокатку можно проводить как в продольном, так и в поперечном относительно волокон направлении со степенями обжатия до 10—15% за один проход.  [c.163]

Пайка боралюминия. Разработано несколько технологических процессов пайки боралюминия. Пайка низкотемпературными припоями производится в температурном интервале, не оказывающем разупрочняющего влияния на армирующие волокна [200]. Паяные соединения, полученные этим методом, способны работать при температурах до 315° С. Было опробовано несколько припоев для низкотемпературной пайки. Припой состава 55% Сс1, 45% Ag рекомендуется для рабочих температур до 90° С он обеспечивает прочность соединения на срез, равную 9 кгс/мм. Припой состава 95% цинка и 5% алюминия рекомендуется для рабочих температур до 315° С, при которых прочность соединения на срез составляет 3 кгс/мм .  [c.191]

В заключение запишем уравнения закона Гука для ортотроппого материала. В последнее время широкое распространение получили так называемые композитные материалы, состоящие, например, из полимерной основы, армируемой волокнами из высокопрочного материала. Упругие свойства такого композитного материала зависят от плотности насыщения и ориентации в пространстве армирующих волокон. В общем случае такой материал рассматривается как анизотропный. В частном случае, когда армирующие волокна расположены в трех взаимно ортогональных направлениях, упругие свойства будут симметричны относительно трех ортогональных плоскостей.  [c.39]

Влияние типа армирующих волокон и схем армирования на формирование свойств. Для изготовления пространственно-армированных углерод-угле-родных композиционных материалов применяют армирующие волокна различных видов (нити, жгуты, стержни и т. д.) с различными физикомеханическими свойствами. Кроме того, армирующие каркасы, имеющие одну и ту же структурную схему, могут быть созданы различными методами (см. с. 168), что оказывает определенное влияние на свойства материала. О влиянии типа волокон на формирование свойств композиционного материала свидетельствуют данные (рис. 6.8), полученные из опытов на изгиб образцов, вырезанных из материала в направлении г [111]. Армирующий каркас был создан прошивкой в направлении 2 пакета, набранного из слоев низкомодульной графитовой ткани. Для прошивки использовали как обычные непропитан-ные углеродные жгуты и нити с различной площадью поперечного сечения, так и предварительно пропитанные и отвержденные (в виде стержней) нити. При изготовлении материалов изменялись только содержание и тип волокон направления z в двух других направлениях параметры армирования сохранялись постоянными.  [c.172]

Примером безмоментных оболочек являются сосуды, изготовленные методом намотки. Расчет таких конструкций основан на нитяной модели материала, согласно которой внутреннее давление и силы, приложенные по краям оболочки, воспринимаются армирующими волокнами и вызывают в них только растягивающие напряжения. Такие конструкции и методы их расчета рассмотрены в работах Рида [67], Росато и Грове [6в], Шульца [75]. Современные методы расчета сосудов давления и корпусов двигателей изготовленных методом намотки [24, 42], учитывают изгиб оболочки, вызванный соответствующим характером нагружения, а также несимметрией распределения геометрических параметров или упругих свойств материала по толщине. Изгиб-ные напряжения, предсказываемые в этом случае теорией малых деформаций, могут оказаться значительными. Однако рассматриваемые оболочки обычно деформируются таким образом, что в процессе нагружения остаются безмоментными. На безмоментной теории, предусматривающей большие деформации системы, основан метод определения равновесных форм армированных оболочек. Обзор исследований, посвященных оптимизации безмоментных оболочек из композиционных материалов, приведен в работе Ву [901.  [c.148]


Трансверсалъно изотропным называют анизотропный материал, который имеет только одну плоскость, в которой все направления эквивалентны... Название трансверсально изотропный используется для того, чтобы отличать такой материал от изотропного. По-видимому, более подходящим было бы название ионотропный , поскольку оно характеризует материал, имеющий включения (или армирующие волокна) только в одном направлении [93]. Если плоскость изотропии совпадает с координатной плоскостью Х1Х , то матрица коэффициентов жесткости по-прежнему определяется равенством (10), в котором следует произвести следующую замену  [c.161]

Армирующие волокна в композиционном материале обычно выбирают из соображений максимальных прочностных и жест-костных характеристик. Основное назначение матрицы — соедн-  [c.197]

Для деформаций видов (2) и (4) материалы могут быть армированы волокнами, параллельными образующим коаксиальных цилиндров, являющихся главными поверхностями. В случае (3) волокна могут быть или параллельными, или перпендикулярными главным поверхностям, в начальном состоянии представляющим собой параллельные плоскости. Деформации вида (5) остаются контролируемыми для материалов, армированных волокнами, в начальном состоянии параллельными оси вращательной симметрии. Применение этого вида деформаций для получения решений в случае волокнистых и слоистых композитов несколько более подробно рассмотрено в статье Пипкина [23].  [c.351]

В микрофотоупругих экспериментах используются модели с армирующими волокнами материала-натуры, например со стекловолокнами, волокнами бора, сапфировыми усами и т. д. Эти модели точнее имитируют моделируемый композит, поскольку в них сохраняется трехмерное напряженное состояние и воспроизводятся характеристики сцепления между матрицей и волокнами. Были проведены микрофотоупругие опыты, в которых для определения неэффективной длины волокна и исследования вида и путей распространения микроразрушения изучались распределения напряжений и их концентрация вокруг концов волокон, разрывов волокон и нарушений сцепления волокна с матрицей.  [c.520]

Роллинс [42] впоследствии подтвердил, что усталостное поведение композитов с волокном бора (на примере композита алюминия 6061 с бором) чувствительно к наличию паров воды, и, кроме того, отождествил эту чувствительность со склонностью волокон бора диаметром 0,010 см к продольному расщеплению. Поведение, подобное тому, которое показано на рис. 20, наблюдалось в случае сухой и влажной сред гелия. Введение паров воды в испытательную камеру не оказало никакого заметного эффекта для образцов, которые были армированы волокнами бора диаметром 0,014 см, что согласуется с наблюдающимся предрасположением к продольному расщеплению волокон меньшего, но не большого диаметра [32]. Модуль разрушения волокон бора обоих диаметров не зависел от характера атмосферы это под-  [c.432]

В оригинале shear-lag model — анализ, рассматривающий перераспределение нагрузок между армирующими волокнами композита посредством касательных напряжений, переводится как сдвиговый анализ , модель сдвигового анализа . — Прим. перев.  [c.46]

В работе [11] модель накопления повреждений при растяжении распространена на случай действия касательных напряжений в плоскости слоя. При этом действие нормальных напряжений, перпендикулярных армирующим волокнам слоя, не учитывается. Однако в слоях композита при плоском напряженном состоянии в зависимости от схемы армирования могут возникать все три ко.мпоненты напряжений (нормальные в направлении армирующих волокон, перпендикулярные им и касательные в плоскости слоя). Следовательно, для применения критерия прочности [II] к анализу слоистого композита необходимо учитывать и нормальные напряжения, перпендикулярные направлению армирования. Простые рассуждения показывают, что действие этих напряжений в композите с полимерной матрицей может проявиться в первую очередь в деформировании матрицы, а не волокон. Поскольку подобное предположение справедливо и для касательных напряжений в плоскости, логично ол<идать, что совместное действие нормальной и касательной компонент может привести к появлению неупругости матрицы при более низких напряжениях, чем при действии каладой из компонент в отдельности.  [c.47]

Обобщенный полиномиальный критерий прочности для материала с любым видом симметрии можно вывести на основе метода, подробно изложенного в [3]. Рассмотрим два наиболее часто применяемых подхода для описания поверхности прочности композитов полиномиальный критерий, записанный в тензорах напряжений, и критерий наибольших деформаций. Ограничимся случаем ортотроиии, которая характерна для большинства композитов с непрерывными армирующими волокнами.  [c.106]

По методу Петита и Ваддоупса в качестве исходной ин формации используются диаграммы деформирования мате риала слоя при растяжении сжатии в направлениях армирования и перпендикулярно армирующим волокнам, диаграммы деформирования при сдвиге и зависимость наиболь-щего коэффициента Пуассона от ei,.  [c.151]

Наиболее интересными с практической точки зрения являются исследования, в которых определяются условия увеличения долговечности деталей в результате уменьшения скорости роста усталостных трещин. Увеличение прочностных и пластических характеристик материала (ств, стт, i ), уменьшение размера структурных составляющих, увеличение коэффициента асимметрии цикла нагружения, уменьшение жесткости двухосного напряженного состояния, понижение температуры испытания и наличие вакуума — вот далеко не полный перечень факторов, приводящих к уменьшению скорости роста трещины. Увеличение сопротивления усталости, связанное с затруднением роста трещины, происходит и при упрочнении границ зерен дробной механотермической обработкой, и при взрывном упрочнении, приводящем к замораживанию дислокаций [8]. Торможения развития трещин добиваются также применением композиционных материалов, в которых трещина либо вязнет в мягких слоях, либо не может разрушить более прочные армирующие волокна.  [c.7]

К первой группе относятся композиционные материалы, упрочненные дисперсными частицами и хаотически расположенными монокристалличе-скими нитями (так называемыми усами ) (см. рис. 114, I—1). Материалы, получаемые методами порошковой металлургии и состояш ие, например, из частиц карбидов тугоплавких металлов, помеш енных в связующее, образуемое металлами железной группы, иллюстрируются схемой I—2. За рубежом значительное внимание уделяют созданию металлических материалов, например, на медной основе, армированных дискретными отрезками вольфрамовой, молибденовой проволоки (/—3), а также расположенными в металлической основе непрерывными проволоками 1—4) [97 98]. Могут быть изготовлены материалы, имеющие армирующие элементы в виде сеток -— проволочных тканей и сот (/—5). Еще один вид образуют материалы, имеющие непрерывные неориентированные армирующие волокна — типа войлока , в зарубежной практике называемые фелтметалл (/—6).  [c.250]

Волокна определяют уровень прочностных свойств композиционных материалов при условии их совместимости с матрицей. Напряжения, возникающие в колгаозиции при нагружении, воспринимаются в основном армирующими волокнами, которые придают композиции прочность и жесткость в направлении ориентации волокон.  [c.33]

Для повышения высокотемпературной прочности и жаропрочности в армирующие волокна вводят легирующие добавки, повышающие температуру начала ракристаллизации, поскольку последняя приводит к сильному разупрочнению волокон. Зависимость предела прочности от состава проволоки и ее диаметра представлена в табл. 3.  [c.44]


В зависимости от модуля упругости наполнителя композиты низкого давления делятся на низко- и высокомодульные. Материалы первого типа армированы волокнами из целлюлозы (хлопок, лен) и стекла. Волокна материалов второго типа—из углерода, бора, корунда, органических арамидов — имеют высокий модуль упругости. В качестве армирующего материала применяют и разнообразные ткани [1]. Терминология, используемая применительно к композитам, приведена в работах [1—4].  [c.72]


Смотреть страницы где упоминается термин Армирующие волокна — : [c.687]    [c.170]    [c.49]    [c.185]    [c.198]    [c.214]    [c.517]    [c.87]    [c.216]    [c.160]    [c.204]   
Справочник металлиста Том2 Изд3 (1976) -- [ c.0 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.0 ]



ПОИСК



Анпзотропия армирующих волокон

Волокна

Волокна армирующие — Их технологичность 11 — Требования к ним

Волокна армирующие, свойства

Прочность армирующей фазы влияние диаметра волокн

Слоистые армирующие наполнители с хаотическим распределением волокон в плоскости (маты)

Тепло- и электропроводность армирующих волокон



© 2025 Mash-xxl.info Реклама на сайте