Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая неоднородность

Возникновение коррозионных элементов происходит не только при контакте двух разнородных металлов, но и при воздействии раствора электролита на один и тот же металл, отличающийся на разных участках физической или химической неоднородностью. Весьма распространенными элементами этого типа являются также элементы, возникающие при взаимодействии электролитов с техническими металлами, при наличии в последних примесей, или с гетерогенными сплавами.  [c.30]

Свинцовые бронзы (27...33 % РЬ, остальное Си) являются хорошими подшипниковыми материалами. Недостатком этих бронз является склонность к ликвации (химической неоднородности при кристаллизации). Эти бронзы из-за низкой твердости применяют только в виде покрытий на более твердую основу. Необходимо, чтобы сопряженная поверхность с бронзой была закалена до значительной твердости, гладко и точно обработана.  [c.35]


Химическая неоднородность сварного  [c.455]

Внутрикристаллитная химическая неоднородность.  [c.457]

Рис. 12.24. Виды химической неоднородности сварного шва Рис. 12.24. Виды химической неоднородности сварного шва
Межкристаллитная химическая неоднородность. Межкристал-литная химическая неоднородность определяется как отношение концентраций примеси в пограничной зоне и в центре кристаллита (С5/С2, см. рис. 12.24). Микрохимическая неоднородность, возникающая внутри столбчатых или равновесных кристаллитов, определяет и состав пограничных зон между ними. Установившаяся пограничная концентрация в жидком расплаве при расстоянии между соседними кристаллитами (ветвями дендритов или ячейками), равном 26, начинает резко возрастать, иногда достигая значений, достаточных для образования новой фазы. При ячеистом или дендритном типе кристаллизации в результате  [c.460]

Внутризеренная химическая неоднородность. Внутризеренную химическую неоднородность обычно связывают с наличием внутри зерна инородных частиц — карбидов, интерметаллидов,  [c.463]

Микрохимическая неоднородность с большой степенью точности и локальности (пятно анализа 1...4 мкм) может быть определена существующими методами анализа. При этом глубина анализируемого слоя составляет 1...3 параметра кристаллической решетки. Иногда такого анализа бывает достаточно, чтобы судить об эксплуатационных свойствах сварного соединения. Однако в ряде случаев, например при определении степени граничной неоднородности аустенитных зерен, локальность анализа может оказаться недостаточной. В этом случае представление о степени химической неоднородности можно получить, применяя аналитические методы расчета.  [c.464]

ХИМИЧЕСКОЙ НЕОДНОРОДНОСТИ СВАРНОГО ШВА  [c.465]

Химическая неоднородность сварных швов может быть следствием недостаточной технологической культуры выполнения работ или самой физической природы процесса формирования сварного соединения и свойств свариваемого металла.  [c.465]

Ниже будет рассмотрено влияние режима сварки на степень химической неоднородности, возникающей как следствие воздействия термического цикла на материал конструкции. При этом вероятность появления того или иного вида неоднородности зависит от характера образующейся структуры, что, в свою очередь, определяется как химическим составом сплава, так и режимом сварки, главным образом скоростью охлаждения и кристаллизации сварного шва.  [c.465]


Такой вид химической неоднородности может проявляться при повышенной скорости кристаллизации только у сплавов, имеющих большую усадку. В этих условиях обогащенный примесями расплав, заключенный в объемах 1, 2, 3, может значительное время находиться в жидком состоянии после достижения температуры равновесного солидуса.  [c.466]

Процесс сварки сопровождается интенсивным термодеформационным воздействием на металл. Высокие температуры нагрева, неравновесные условия кристаллизации шва, высоко- и низкотемпературная пластическая деформация, значительная химическая неоднородность металла шва оказывают большое влияние на образование и перераспределение дефектов кристаллического строения в шве и зоне термического влияния.  [c.473]

Перераспределение легирующих элементов и примесей в сталях при высокотемпературном сварочном нагреве — сложный диффузионный процесс, который может приводить как к снижению, так и повышению МХН. После завершения аустенитизации внутри зерен аустенита существует неравномерное распределение легирующих элементов и примесей, особенно углерода и карбидообразующих. Углерод концентрируется в местах, где ранее располагались частицы цементита, а также на участках зерна, где находятся еще не полностью растворившиеся специальные карбиды. Для сталей обыкновенного качества и качественных после горячей обработки давлением (прокатки, ковки) характерна начальная химическая неоднородность, связанная с волокнистой макроструктурой и полосчатой микроструктурой. Волокнистая макроструктура образована строчками раздробленных и вытянутых вдоль направления деформации неметаллических включений (сульфидов, оксидов, фосфидов). В зоне строчек имеет место повышенное содержание S, Мп, О2, Si, Р, А1. Полосчатая микроструктура вызвана более высокой концентрацией углерода в осях  [c.514]

Первопричиной хрупких разрушений нефтегазохимической аппаратуры является сложность напряженного состояния металла конструктивных элементов корпуса аппарата объемность напряженного состояния, особенно в местах концентраторов напряжений пониженные (хладноломкость) или повышенные (химическая неоднородность и ползучесть) температурные условия эксплуатации и повышенные эксплуатационные нагрузки.  [c.93]

Так, необходимость определения общей химической неоднородности (ликвации) вызвана тем, что химический состав стали дает представление лишь о среднем количествен-  [c.302]

Глубокое травление или травление в реактиве на общую химическую неоднородность позволяют выявить зону термического влияния и количество слоев сварного шва.  [c.307]

ВЛИЯНИЕ ВНЕШНЕГО ВОЗДЕЙСТВИЯ НА ХИМИЧЕСКУЮ НЕОДНОРОДНОСТЬ КРИСТАЛЛИЗУЮЩЕГОСЯ СЛИТКА  [c.82]

Структурную неоднородность, кроме условий деформации, час вызывает неоднородность фазового состава и прежде всего налич частиц дисперсных фаз. Следует отметить, что речь идет о фаз вой, а не химической неоднородности. Химическая неоднородное сама по себе не вызывает сильной структурной неоднородности, ес. она не приводит к фазовой неоднородности (за счет распада пер сыщенного твердого раствора и др.).  [c.400]

ВЛИЯНИЕ СТРУКТУРЫ, СТРУКТУРНОЙ и ХИМИЧЕСКОЙ НЕОДНОРОДНОСТИ НА ПЛАСТИЧНОСТЬ МЕТАЛЛОВ И СПЛАВОВ  [c.500]

Важным фактором, воздействующим на пластичность, является степень структурной и химической неоднородности. Наиболее существенное влияние на деформируемость сплавов оказывает зональная неоднородность.  [c.500]

СТРУКТУРНЫЕ ОСОБЕННОСТИ ЛИТЫХ МЕТАЛЛОВ И СПЛАВОВ АНИЗОТРОПИЯ ПЛАСТИЧЕСКИХ свойств. От деформированного металла слиток отличается большей степенью структурной и химической неоднородности 1) плотность литого металла или сплава ниже из-за наличия макро- и микропустот, располагающихся вблизи головной и осевой частей слитка. Слитки кипящей стали имеют развитую зону подкорковых пузырей. Подкорковые пузыри, часто выходящие к поверхности, могут встречаться и в слитках других сталей, особенно при нарушении технологии выплавки 2) в слитках сталей и сплавов, полученных обычными методами выплавки, часто наблюдается значительная сегрегация вредных примесей (серы, фосфора и т. д.), особенно вблизи головной и осевой его частей 3) для крупных слитков характерно интенсивное развитие дендритной ликвации 4) в слитках двух- и многофазных сталей и сплавов вторая фаза образует включения, часто окаймляющие отдельные кристаллы.  [c.500]


Структурная неоднородность слитка тесно связана с химической неоднородностью. Степень дендритной ликвации зависит от типа диаграмм состояния стали и сплава.  [c.501]

Температура нагрева при этом определяется с учетом требуемых механических свойств по кривым, приведенным на рис. 63. Отжиг первого рода применяют также для литых сплавов с химически-неоднородным составом, т. е. для сплавов с признаками зональной или дендритной ликвации. Сплавы в этом случае нагревают до высоких температур для ускорения процесса диффузии, приводящего к выравниванию химического состава сплава, т. е. к его гомогенизации.  [c.107]

Второй способ повышения реальной прочности металлов заключается в изменении структурного состояния материала при заданном постоянном уровне сил межатомных связей. Низкие значения прочности технических ЛОО металлов и сплавов объясняются неоднородностью структуры — наличием неравномерно распределенных несовершенств кристаллического строения (дислокаций, вакансий, чужеродных атомов) и границ зерен, а также металлургических дефектов (пор, химической неоднородности и т. д.). Это приводит к резкому снижению энергоемкости металла ( мех вследствие неоднородного характера поглощения энергии различными объемами металла, т. е. к уменьшению величин 1 5 и п [см. уравнение (10)].  [c.22]

Все литые металлы и сплавы, не подвергнутые обработке, обнаруживают литую структуру, известную еще под названием закристаллизованная или первичная структура . Зерно закристаллизованной структуры, особенно у сплавов с образованием твердого раствора, выявляется в иных условиях травления, чем зерен-ные структуры сплавов, подвергнутых обработке. Однако в первичной структуре также могут быть выявлены границы и поверхность зерен, фигуры травления. В литых сплавах выявляют дендритную структуру, типичную для твердого раствора. Зерна по составу не однородны, при кристаллизации центральная зона (начало кристаллизации) имеет иной состав, чем внешняя часть (конец кристаллизации). Это явление называют ликвацией твердого раствора. Изменение концентрации происходит постепенно. Химическая неоднородность кристалла зависит от диффузионной способности взаимодействующих легирующих элементов. У многокомпонентных сплавов неоднородность твердого раствора определяется примесными и легирующими элементами, имеющими самые низкие коэффициенты диффузии, например фосфор в технических железных сплавах. Инертность фосфора настолько велика, что несмотря на у а-превращение и на дополнительный выравнивающий отжиг (диффузионный отжиг), первичная структура (дендриты  [c.29]

Слоистая ликвация способствует увсличеиию химической неоднородности металла па этом участке по сравнению с металлом шва. Состав и структура металла в этой зоне зависят также от диффузии элементов, которая может проходить как из основного нерасплавившегося металла в Лчидкий металл, так и наоборот. Этот участок по существу и является мостом сварки. Его протяжсп-ность зависит от состава и свойств металла, способа сварки и обычно не превышает 0,5 мм, но свойства металла в нем могут оказывать решающее влияние па свойства всего свар юго соединения.  [c.212]

Дополнвтельаые напряжения мохут возникать также из-за структурной в химической неоднородности керамик.  [c.12]

При исследовании макрошлифа можно определить форму и расположение зерен в литом металле (рис. 2, ) направлепие волокна (деформированные кристаллиты) в поковках н пгтамиовках (рис. 2, б) дефекты, нарушающие сплогппость металла (усадочная рыхлость, газовые пузыри, раковины, трещины и т. д.) химическую неоднородность сплава, вызванную кристаллизацией или созданную т ермической, ат акже химико-термической (цементация, азотировапие и др,) обработкой.  [c.11]

Зональная ликвация. Кроме внутрикристаллитиой ликвации, химическая неоднородность образуется по зонам слитка — зональная ликвация.  [c.94]

В двух ранее рассмотренных случаях нами не учитывалось влияние диффузии на степень химической неоднородности. При установившихся непрерывных процессах кристаллизации незначительное диффузионное перераспределение примесей приводит к некоторому выравниванию концентраций, однако качественно картину их распределения не изменяет. Для прерывистого процесса кристаллизации характерно появление определенной периодичности в распределении примесных элементов по длине кристаллита. В момент замедления, а затем и остановки процесса диффузия примеси в жидкую и твердые фазы начинает играть существенную роль в выравнивании составов как внутри однородных фаз, так и между твердой и жидкой. Из рис. 12.25, в, видно, что в момент остановки процесса затвердевания слои жидкости, прилегаюш,ие к твердой фазе, обедняются примесью (—ДСж), а затвердевший металл обогащается ею. Возобновление процесса кристаллизации из обедненного состава жидкой фазы приводит к снижению содержания примеси во вновь образующихся кристаллитах (—АСтв). Повторяясь периодически, этот процесс приводит к появлению так называемой слоистой неоднородности. Количество легирующего элемента в жидкой и твердой фазах на границе сплавления определяется следующими зависимостями  [c.459]

Химическая неоднородность в зоне сплавления и в около-шовной зоне. Рекристаллизационные процессы, происходящие при сварке в околошовной зоне, как правило, сопровождаются перераспределением примесей, что иногда приводит к развитию химической неоднородности, особенно на границе с жидким металлом, в зоне полуоплавленных зерен. Процессы, связанные с перераспределением примесей в твердом состоянии, в отличие от ликвационных чаще называют сегрегационными, а образующиеся места скопления примесей — сегрегациями.  [c.461]


Рассмотрим явления, связанные с появлением межзеренной химической неоднородности в зоне сплавления и термического влияния (соответственно Се/С и Сц/Сд, см. рис. 12.24) применительно к однопроходной сварке неплавящимся электродом однородного сплава.  [c.461]

Рассмотренные ранее процессы возникновения химической неоднородности характерны в основном для малых скоростей охлаждения или применительно к сварке для мягких режимов. Скорости охлаждения кристаллизующегося металла шва при сварке с большими погонными энергиями q/v обусловливают достаточно интенсивное протекание диффузионных процессов, что приводит к выравниванию состава и снижает внутрикристал-лическую ликвацию (рис. 12.32). При увеличении скорости охлаждения диффузионные процессы пройти не успевают и степень внутрикристаллической ликвации Сл увеличивается вплоть до максимума при значении Wi. Дальнейшее увеличение скорости охлаждения (шз), естественно, еще более подавляет диффузионные процессы, однако степень внутрикристаллической ликвации уменьшается в связи с изменением самого характера кристаллизации, приближением его к бездиффузионному процессу.  [c.466]

В этих выражениях асв—десв/дТ аф=де дТ, т. е. асв и аф—это темпы деформации, обусловленные усадкой и формоизменением, а — предельный темп деформации, характеризуюш,ий пластичность систем в т.и.х. Значение а зависит от схемы кристаллизации шва, его химического состава и степени химической неоднородности, формы шва, схемы главных напряжений, определяемых в значительной степени способом и режимом сварки.  [c.483]

Как отмечалось ранее (раздел 2.3), сварные соединения жаропрочных сталей типа 15Х5М имеют явно выра енну о структурную механо-химическую неоднородность. HaM6ojiet это присуще разнородным сварным соединениям, выполненным аустенитными электродами (рис. 2.7).  [c.150]

С позиций теории системного анализа и самооргонизоции проведен анализ основных проблем технологии твердотельных мотсфиалов, симптомами которых являются слабая воспроизводимость свойств, наличие структурно-химических неоднородностей разных масштабов (происхождение которых не очевидно с точки зрения внутренних связей составляющих их атомов или молекул), замедление процессов создания новых материалов с программируемыми свойствами и т. д. [1].  [c.9]

Особое внимание будет уделено структурным характеристикам, связанным с величиной зерна, протяженностью межзеренных и межфаэных границ, степенью химической неоднородности кристаллов, оказывающим влияние на пластичность и сопротивление деформации металлов и сплавов.  [c.500]

Штейн Л. М. Исследование структурной и химической неоднородности детонационных покрытий.— В кн. Тез. докл. и сообщ. Всесоюэ. научно-техн. совещ. Новые методы нанесения покрытий напыление.м , 12—14 окт. 1976 г. Ворошиловград Б. и., 1976, с. 36—38.  [c.205]


Смотреть страницы где упоминается термин Химическая неоднородность : [c.209]    [c.310]    [c.13]    [c.44]    [c.457]    [c.457]    [c.464]    [c.555]    [c.82]    [c.15]    [c.505]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.16 ]

Металлы и сплавы Справочник (2003) -- [ c.16 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.10 ]



ПОИСК



Неоднородность



© 2025 Mash-xxl.info Реклама на сайте