Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства улучшения

Механические свойства улучшенных сталей в зависимости от временного сопротивления (А. П. Гуляев)  [c.332]

Закалка применяется для отливок, поковок, штамповок и механически обработанных деталей с целью повышения твёрдости, получения требуемых физико-механических свойств, улучшения специальных физических и химических свойств (высокие характеристики прочности, износоустойчивости, коррозионной стойкости, магнитных и электрических свойств).  [c.963]


Для повышения механических свойств, улучшения обрабатываемости, коррозионной стойкости в состав латуни вводят леги- рующие элементы — РЬ, 5п, N1, Ре, А1, З и др.  [c.136]

С помощью легирования никелем или эквивалентными элементами можно подавить процессы образования мартенсита или феррита и добиться сохранения аустенитной структуры при комнатной температуре. Соотношение 18—8 — наиболее экономичная комбинация никеля и хрома, приводящая к аустенитной структуре (см. рис. 1.8) в присутствии допустимого количества других стабилизирующих аустенит элементов, главным образом углерода. Основные достоинства такой структуры—высокие механические свойства, но эта же структура отличается и повышенной коррозионной стойкостью. Все стали, приведенные в табл. 1,8, являются разновидностями стали 18—8, а изменения внесены для повышения механических свойств, улучшения обрабатываемости и общей коррозионной стойкости. Большинство добавок (например, добавка молибдена, повышающая коррозионную стойкость) вызывает необходимость дополнительного легирования, обеспечивающего чисто аусте-нитную структуру. Как и в случае мартенситной стали, присутствие 6-феррита приводит к уменьшению коррозионной стойкости (из-за сегрегации хрома или молибдена в феррите) и может влиять также на механические свойства и обрабатываемость в горячем состоянии.  [c.25]

Для улучшения микроструктуры стали и ее механических свойств, улучшения обрабатываемости и разрушения цементитной сетки  [c.115]

Горячей штамповкой изготавливают днищ любой толщины при пониженном сопротивлении штампуемого материала деформировании на прессах относительно низкой мощности в штампах из недорогих сталей, а также получают детали с мелкозернистой структурой и улучшенными механическими свойствами. Недостатки горячей штамповки днищ  [c.8]

Более высокие механические свойства закаленной и высоко-отпущенной стали по сравнению с отожженной или нормализованной (при равной прочности у закаленной и высокоотпущен-ной Оо,2, ip, Он выше) объясняются различным строением сорбита (перлита) отпуска и сорбита закалки, имеющих, как указывалось выше, в первом случае зернистое, а во втором — пластинчатое строение. Двойная термическая обработка, состоящая в закалке с последующим высоким отпуском, существенно улучшающая общий комплекс механических свойств, является основным видом термической обработки конструкционных сталей и называется улучшением.  [c.280]

Для низкоуглеродистых нелегированных сталей разница в свойствах между отожженным и нормализованным состояниями практически отсутствует и рекомендуется эти стали подвергать не отжигу а нормализации. Для среднеуглеродистых сталей (0,3—0,5% С) различие в свойствах нормализованной и отожженной стали более значительно в этом случае нормализация не может заменить отжига. Но для этих сталей нормализацией часто за.меняют более дорогую операцию улучшения. Нормализация в этом случае придает стали по сравнению с отожженным состоянием более высокую прочность, но по сравнению с улучшенным состоянием нормализованная сталь имеет несколько меньшую пластичность и вязкость. Для неответственных деталей нормализация дает достаточно удовлетворительные механические свойства для ответственных деталей следует все же применять улучшение.  [c.311]


Из сказанного выше явствует, что оптимальные механические свойства достигаются в результате улучшения (или изотермической закалки), для чего аустенит должен быть при закалке переохлажден до температур образования мартенсита. В углеродистых сталях (Ст 20—40) применяемых на практике интенсивных закалочных средах (вода) сквозную закалку удается получить в сечениях до 10—15 мм.  [c.367]

Было показано, что введение легирующих элементов приведет вначале к улучшению механических свойств (например, порога хладноломкости Tso, рис. 289) пока при данных условиях (размер деталей, условия охлаждения) не будет достигнута сквозная прокаливаемость, что соответствует минимуму на кривых А н Б, после чего дальнейшее увеличение содержания легирующего элемента приводит уже к ухудшению свойств , (сталь Б прокаливается глубже, чем сталь А, рис. 289).  [c.367]

Эффект улучшения, т. е. повышение механических свойств стали после двойной обработки, наблюдается лишь ири отпуске до температур, при которых сохраняется ориентация по мартенситу. Типичные структуры конструкционной улучшаемой стали показаны на рис. 300,а, б,  [c.390]

Часто в оловянистую бронзу вводят в небольшом количестве цинк, свинец и др. Цинк, вводимый в состав оловянистых бронз, улучшает их литейные свойства, уменьшает интервал кристаллизации, не нарушая однородности сплава, и не влияет существенным образом на механические свойства. Фосфор содержится в бронзе в незначительных количествах при его содержании в сплаве не свыше 1% он улучшает литейные, антифрикционные и механические свойства. Свинец вводится в основном для улучшения антифрикционных свойств оловянистой бронзы. Суммарное содержание других примесей (висмут, железо, сурьма) в оловянистых бронзах допустимо в пределах 0,2.—0,4%.  [c.250]

Высокие литейные свойства имеют сплавы, содержащие в структуре эвтектику. Эвтектика образуется в сплавах, в которых содержание легирующих элементов больше предельной растворимости в алюминии, Поэтому содержание легирующих элементов в литейных сплавах выше, чем в деформируемых. Чаще применяют сплавы А1—Si, Л1—Си, А1 —Mg, которые дополнительно легируют небольшим количеством меди и магния (А1—Si), кремния (А1—Mg), марганца, никеля, хрома (Л1 —Си). Для измельчения зерна, а следовательно, улучшения механических свойств в сплавы вводят модифицирующие добавки (Ti, Zr, Н, V и др.). Механические свойства некоторых литейных сплавов алюминия приведены в табл. 23.  [c.333]

Наполнители вводят для улучшения физико-механических свойств пластмасс и повышения их экономичности. Наполнители делятся на органические и неорганические.  [c.342]

Среднеуглеродистые легированные стали применяют для деталей, подвергаемых улучшению и поверхностной или объемной закалке до средней или высокой твердости. Легирующие элементы в конструкционных легированных сталях, как правило, повышают механические свойства, закаливаемость и прокаливаемость сталей.  [c.32]

Термодинамический процесс уплотнения кристаллической решетки способствует улучшению физико-механических свойств металлов. Процессы взаимодействия между металлами для заполнения таких пустот наиболее эффективны при условии, если типы кристаллической решетки, параметры и их атомные радиусы однотипные.  [c.24]

Д 1я улучшения структуры и механических свойств применяют термическую обработку - отжиг или нормализацию.  [c.364]

В ряде ответственных случаев или же для отливок из специальных сплавов применение отжига или нормализации недостаточно. При более высоких требованиях к механическим свойствам литых деталей (формообразующие детали пресс-формы, литые штампы) применяют более сложную термическую обработку, например двойной отжиг улучшение - режим, состоящий из закалки в масле (реже в воде) с последующим отпуском при 500 - 600 С химикотермическую обработку - цементацию, азотирование, цианирование термомагнитную обработку литых магнитов и т.д.  [c.364]

Вопросы прочности и разрушения твердых тел изучаются различными специалистами теоретиками в области физики твердого тела, физиками-экспериментаторами, металлургами и инженерами, изыскивающими пути улучшения механических свойств конструкционных материалов.  [c.326]


Следует иметь в виду, что исследовать прочностные и деформационные свойства любого материала — это значит изучать его потенциальные возможности, чтобы выявить специфические свойства и условия, при которых использование данного материала в конструкции было бы оптимальным. В других случаях нужно выявить те дополнительные модификации технологического и конструкционного характера, которые существенным образом скажутся на улучшении важнейших физико-механических свойств материала, а следовательно, и на повышении их- прочности и долговечности при эксплуатации в тех или иных условиях.  [c.744]

Таблица 204. Механические свойства улучшенной стали 38ХНЗМА при низких температурах [28, с. 155] Таблица 204. Механические свойства улучшенной стали 38ХНЗМА при низких температурах [28, с. 155]
Таблица 206. Механическйе свойства улучшенной стали (состав, % 0,39 С 1,18 Сг 2,6 Ni 0,23 Мо 0,010 S 0,030 Р) [157] Таблица 206. Механическйе свойства улучшенной стали (состав, % 0,39 С 1,18 Сг 2,6 Ni 0,23 Мо 0,010 S 0,030 Р) [157]
Плавка металла осуществляется в вагранках производительностью 20 т/ч. Для усреднения химического состава чугуна н накопления металла каждая вагранка оборудована ко-пильником. Для плавки чугуна применяются следующие материалы чугуны литейные коксовые марок ЛК-1, ЛК-2, ЛК-3, ЛК-4 чугун передельный коксовый марок Ml и М2 зеркальный чугун 34—3 высококремнистый чугун марки ВКЛ-2 ферросилиций доменный возврат литейного производства лом стальной и чугунный брикеты чугунной стружки марки А8-11. Для получения необходимых механических свойств, улучшения структуры металла производится модифицирование жидкого чугуна молотым силикомишметаллом марки 4МТУ1-36-66.  [c.275]

Рис. 1.4. Влияние температуры отпуска на механические свойства улучшенных сталей 12X13 и 20X13 (выдержка 1 ч, охлаждение в масле). Исходное состояние закалка с 1000 С, охлаждение в масле Рис. 1.4. <a href="/info/222925">Влияние температуры</a> отпуска на механические свойства улучшенных сталей 12X13 и 20X13 (выдержка 1 ч, охлаждение в масле). Исходное состояние закалка с 1000 С, охлаждение в масле
Кроме простых латуней — сплавов только меди и цинка, применяют специальные латуни, в которых для придания тех или иных свойств дополнительно вводят различные элементы свинец для улучшения обрабатываемости (латунь марки ЛС59 содержит около 40о/о Zn и 1—2% РЬ, так называемая автоматная латунь), олово для повышения сопротивления коррозии в морской воде (так называемая морская латунь), алюминий и никель для повышения механических свойств и т. д.  [c.609]

Повышенное качество сварных швов обусловлено получением более высоких механических свойств наплавленного металла благодаря надежной защите сварочной ванны флюсом, интенсивному раскислению и лепгрованпю вследствие увеличения объема жидкого шлака, сравнительно медленного охлаждения шва под флюсом и твердой шлаковой коркой улучшением формы и поверхности сварного шва и постоянством его размеров по всей длине вследствие регулирования режима сварки, мехаиизированной подачи и перемещения электродной проволоки.  [c.194]

Термообработка всей конструкции может существенно усложнить процесс изготовления, особенно в условиях серийного и массового производств. Поэтому в случае необходимости улучшения механических свойств, снятия остаточных напряжений или стабилизации размеров в какой-либо зоне конструкции выгодш) выбрать такую последовательность сборки и сварки, которая позволяет производить местную или предварительную термообработку отдельных подузлов и деталей.  [c.10]

Для получения сплавов титан легируют А1, Мо, V, Мп, Сг, Sn, Fe, Zr, Nb. Титан легируют для улучшения механических свойств, реже — для повьинення коррозионной стойкости. Удельная прочность (a /Y) титановых сплавов вьнне, чем легированных сталей.  [c.314]

В некоторые бронзы для улучшения их свойств вводят дополнительно Zn, N1, Мп, Р и другие элементы. Так, в оловянных бронзах 2п повышает механические свойства и жидкотекучесть, РЬ улучшает антифрикционные свойства и обрабатываемость резанием, Р повышает антифрикционные свойства и жидкотекучесть. В алюминиевых бронзах Ре и Мп улучшают механические свойства, повышают антикоррозионную стойкость N1 улучшают механические качества, сообщает жаропрочность и антикоррозионность.  [c.295]

Сварочным флюсом (ГОСТ 9087—69) называется неметаллический материал, расплав которого необходим для сварки и улучшения качества шва. Флюс для дуговой сварки защищает дугу и сварочную ванну от вредного воздействия окружающего воздуха и осуществляет металлургическую обработку сварочной ванны. Флюс долйен обе- спечивать хорошее формирование и надлежащий химический состав шва, высокие механические свойства сварных соединений, отсутствие пор и трещин, устойчивость процесса сварки, легкую отделяе-мость шлаковой корки от поверхности шва.  [c.52]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]


Дальнейшее развитие физико-химии углеродных кластеров и получения фуллеренов, фуллеритов и фуллероидов будут способствовать созданию новых материалов с особыми физико-химическими свойствами и улучшению механических свойств конструкционных материалов [21]. В этой связи большой интерес представляют результаты недавних исследований, выявившие наличие в структуре железо - углеродистых сплавов фуллереновых комплексов на основе Qo-  [c.214]

Уровень достижений в области получения твердых материалов с улучшенными свойствами сейчас высок. Однако эти достижения были бы невозможны без научно обоснованного подхода к проблеме улучшения механических свойств. Возможности для такого подхода появились с развитием физических методов исследования твердых тел и прежде всего структурных рентгеновского, электро-нографпческого, нейтронографического и электронно-микроскопи-ческого. Стало ясно, что. большинство свойств твердых тел зависит от особенностей их атомной структуры. Крупным шагом в развитии физической теории прочности твердых тел явились теория несовершенств и, в первую очередь, теория дислокаций. Оказалось, что механическая прочность твердых тел зависит, главным образом, от дислокаций и что небольшие нарушения в расположении атомов кристаллической решетки приводят к резкому изменению такого структурно чувствительного свойства, как сопротивление пластической деформации.  [c.115]

Замечание 6.2.2. Полученные выше уравнения могут применяться не только для описания процесса тепло- и мге-сообмена в теплозащитных покрытиях, но и для моделирования на ЭВМ горения смесевых твердых топлив (СТТ) [З П. Типичные составы СТТ содержат по массе до 70—80% твердого окислителя (обычно это перхлорат аммония (ПХ ) NH4 IO4) и 10—17% горючего (обычно битум, бутадиенов яй каучук, фенолоформальдегидная смола). Для повышения теплоты сгорания в СТТ, как правило, вводят метал, 1Ы (алюминий, бор, магний, бериллий, цинк и др.) в порошкообразном состоянии, а также пластификаторы (для улучшения механических свойств), катализаторы и различные технологические добавки. Роль связующего в такой многокомпонентной гетерогенной системе играет полимерное горючее, которое поэтому называют также связкой.  [c.242]

Алюминий и его ставы обладают хорошей коррозионной стойкостью в атмосфере, нейтральных средах за счет амфотерных свойств образующейся пленки гидроксида алюминия. В растворах азотной, фосфорной и серной кислот он имеет достаточно высокую коррозионную стойкость, а в соляной, фтористоводородной, концентрированной серной, муравьиной, щавелевой кислотах растворяется. При закалке алюминия примеси меди и кремния переходят в твердый раствор, что повышает его коррозионную стойкость. Л.тюминий легируют медью (дуралюмин), магнием (магналии), цинком, кремнием и марганцем, главным образом для улучшения механических свойств.  [c.18]

Оловянистые бронзы обычно легируют 2о, РЬ, N1, Р. Цинк улучшает технологические свойства бронзы и удешевляет ее. Фосфор улучшает литейные свойства. Для изготовления художественного литья содержание фосфора может достигать 1%. Свинец (до 3...5%) вводится в бронзу для улучшения ее обрабатываемости резанием. Никель повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию. Среди медных сплавов оловянистые бронзы имеют самую низкую линейнзто усадку (0,8% при литье в землю и 1,4% - в металлическую форму).  [c.116]

Полиамиды имеют довольно низкий коэффициент трения и по этому показателю уступают только фторопласту и полиформальдегиду, однако по износостойкости и несущей способности превосходят их. Для улучшения прочностных свойств полиамиды армируют, а для снижения коэффициента трения и интенсивности изнашивания наполняют твердыми смазочными материалами (фафит, M0S2, кокс и др.). В табл. 1.9 приведены состав и физико-механические свойства композиционных материалов на основе полиамидов [14 .  [c.30]

Метод ионно-лучевого перемешивания основан на модификации тонкослойных покрытий под воздействием ионных пучков. Толщина модифицируемых [юкрытий, как правило, выбирается соизмеримой глубине проникновения ионов, чем обеспечивается перемешивание атомов на границе пленка-основа. В последнее время для решения проблемы улучшения триботехнических свойств конструкционных и инструментальных материалов успешно применяются сильноточные пучки заряженных частиц. Воздействие интенсивными пучками заряженных частиц позволяет за счет высокоскоростных термических процессов изменять структурно-фазовое состояние поверхностных слоев, управлят1> физико-механическими свойствами материалов в широких  [c.262]


Смотреть страницы где упоминается термин Механические свойства улучшения : [c.33]    [c.158]    [c.254]    [c.166]    [c.166]    [c.80]    [c.98]    [c.381]    [c.505]    [c.121]    [c.269]    [c.83]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.480 ]



ПОИСК



69 - Химический состав 70 - Режимы термической обработки 71 - Механические свойства 71-74 - Способы улучшения

Механические свойства после после улучшения

Механические свойства после улучшения

Оборудование для правки сварных конструкций и улучшения механических свойств сварных соединений

Поковки Механические свойства после улучшения

Резервы улучшения качества и механических свойств углеродистых сталей

Сталь углеродистая - Механические свойства после улучшения

Термическая обработка для повышения твёрдости и улучшения механических свойств (закалка и отпуск)

Улучшение

Хромокремненикелевая Механические свойства после улучшения



© 2025 Mash-xxl.info Реклама на сайте