Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термоэлемент

Термопреобразователь — преобразователь энергии переменного тока в энергию постоянного тока, состоящий из подогревателя, нагреваемого переменным током, и термоэлемента, непосредственно приваренного к подогревателю или объединенного с ним через электроизолирующий элемент с хорошей теплопроводностью [9].  [c.155]

Основная величина, характеризующая тепловое состояние тела, есть его температура. Эта величина является определяющей также и в явлениях теплового излучения, что можно без труда усмотреть из следующего грубого опыта. Нагревая какое-либо тугоплавкое вещество (уголь, металл), мы замечаем, что видимое на глаз (темнокрасное) свечение появляется лишь при определенной температуре (около 500° С). По мере повышения температуры свечение становится ярче и обогащается более короткими волнами, переходя примерно при 1500° С в яркое белое каление. Контролируя свечение спектроскопом, мы можем видеть, как по мере повышения температуры постепенно развивается сплошной спектр свечения, начиная от узкой области красного излучения (Я я яа 700,0 нм) и переходя постепенно в полный видимый спектр. Наблюдая свечение при помощи термоэлемента, можно обнаружить и инфракрасное, и ультрафиолетовое излучение нагреваемого тела.  [c.685]


При изучении закона Стефана—Больцмана измеряется поток, направляемый из отверстия черного тела при помощи линзы на термоэлемент. Нагревая термоэлемент вместо излучения током так, чтобы достичь того же стационарного состояния, оценивают количество энергии, приносимой за I с потоком излучения.  [c.904]

Особенно просты по устройству изотопные источники тока,, в которых в качестве источника тепла для термоэлементов ис-  [c.407]

Рис. 116. Схема установки с ОКГ 1 — кристалл рубина 2 и 3 — зеркала резонатора ОКГ 4 — импульсная лампа 5 — батарея конденсаторов 6 — металлический цилиндр 7 — насыщающийся фильтр 8, 9 — делительные стеклянные пластинки 10 — термоэлемент 11 — гальванометр 12 — фотоэлемент 13 — осциллограф 14 — белый экран 15 — ослабляющий светофильтр 16 — камера для фотографирования /7 —кассета с фотопластинкой Рис. 116. Схема установки с ОКГ 1 — кристалл <a href="/info/164882">рубина</a> 2 и 3 — зеркала резонатора ОКГ 4 — <a href="/info/115203">импульсная лампа</a> 5 — батарея конденсаторов 6 — металлический цилиндр 7 — насыщающийся фильтр 8, 9 — делительные стеклянные пластинки 10 — термоэлемент 11 — <a href="/info/17916">гальванометр</a> 12 — <a href="/info/12008">фотоэлемент</a> 13 — <a href="/info/12630">осциллограф</a> 14 — белый экран 15 — ослабляющий <a href="/info/94229">светофильтр</a> 16 — камера для фотографирования /7 —<a href="/info/306569">кассета</a> с фотопластинкой
Измерительная аппаратура. Термоэлемент 10 (рис. 116), соединенный с чувствительным гальванометром 11, используют для измерения энергии излучения лазера. Энергию импульса в джоулях определяют по показаниям гальванометра с помощью градуировочной кривой.  [c.300]

Рис. 19.6. Схема термоэлемента на полупроводниках а — термогенератор 6 — холодильник Рис. 19.6. Схема термоэлемента на полупроводниках а — <a href="/info/51242">термогенератор</a> 6 — холодильник
Устройство термоэлемента Схема термоэлектрического генератора ясна из рис. 19.6, а. На горячем спае двух полупроводниковых материалов  [c.602]

Подробнее о полупроводниковых термоэлементах см. А. Ф, Иоффе. Полупроводниковые элементы. АН СССР, 1960.  [c.602]

Если температура меньше Т , то, пропуская по цепи электрический ток от внешнего источника в том же направлении, можно тем самым обеспечить поглощение энергии на спае / и выделение энергии на спае //. В этом случае от спая / будет отводиться теплота и последний будет охлаждаться, т. е. термоэлемент будет действовать как холодильное устройство (рис. 19.6,6).  [c.603]


Анализ рабочего процесса. Реальная схема термоэлектрического генератора (термоэлемента) показана на рис. 19.7. Так как полупроводники обладают малой теплопроводностью, то их соединяют через пластину из хорошего проводника теплоты (например, меди), благодаря чему обеспечивается равенство температур обоих полупроводников на каждом из стыков.  [c.603]

К. п. д. термоэлемента по определению равняется отношению WIQ,l, т. е.  [c.605]

Величина г зависит исключительно от свойств применяемых полупроводниковых материалов и размеров термоэлемента.  [c.605]

Из уравнения (19.25) видно, что к. п. д. термоэлемента ни при каких условиях не может стать больше термического к. п. д. цикла Карно в интервале температур —Т - Этот результат очевиден, так как термоэлемент представляет собой тепловой двигатель, в котором подводимая от горячего источника теплота преобразуется в энергию электрического тока. Но для теплового двигателя к. п. д. цикла Карно является верхним пределом, превысить который невозможно. Поэтому к. п. д. термоэлемента всегда (из-за необратимости термоэлектрических процессов) меньше (Т —  [c.606]

Приведенные выше формулы относятся к генерации электрической энергии термоэлементом, когда последний используется как термогенератор.  [c.606]

К. п. д. термогенераторов сравнительно низкий и составляет 3—5%, а в лучшем случае 8%. А. Ф. Иоффе считал, что этот предел в ближайшее время может повыситься до 10—12%, а может быть и до 15% при источниках теплоты порядка 700—800° С. Если учесть, что наиболее совершенные тепловые электростанции достигают уже к. п. д. 40—45%, то становится ясным, что термоэлементы из твердых полупроводников не могут быть использованы в большой энергетике . Зато по мере упрощения технологии, уменьшения толщины термобатарей и их удешевления будет расти применение термоэлектрических генераторов в малой энергетике (где к. п. д. отступает на задний план по сравнению с простотой конструкции, массой и габаритами) и в утилизации тепловых отходов высокотемпературных тепловых машин.  [c.606]

Наиболее часто применяемыми в термоэлементах полупроводниковыми материалами служат сурьмянистый цинк, сернистый свинец, теллуристый свинец, селенистый свинец, теллуристый висмут, селенистый висмут, сурьмянистый теллур и некоторые твердые растворы этих веществ.  [c.606]

Термо-ЭДС Ei2 зависит только от температур Т н соединенных проводников и от природы материалов, составляющих термоэлемент. По значению 12 оценивают температуру в месте спая. В небольшом интервале температур имеет место зависимость i2 = Si2(7 i—Г2), где Si2 — коэффициент термо-ЭДС, определяемый природой материалов термоэлемента и интервалом температур, в котором он применяется. Коэффициент S12 может резко меняться с температурой (и даже менять знак).  [c.560]

Связь между плотностью потока влаги, испаряющейся из отверстий перфорированной секции датчика, и сигналом датчика не является очевидной. Для установления этой связи рассмотрим одну из модификаций датчика, когда перфорация выполняется в виде плоских щелей, параллельных слоям термоэлементов (рис. 2.3). Это дает возможность воспользоваться простым математическим аппаратом для описания работы датчика, а результаты описания перенести на другие модификации. Для простоты положим также, что потоки теплоты и массы направлены от продукта вверх через датчик (случай усушки продукта при его охлаждении).  [c.33]

Часть теплоты, проходящей по термоэлементу 1, может отводиться через слой заполнителя к воде 2. Запишем элементарный баланс для отрезка термоэлемента высотой с1х  [c.33]

Кроме элементарных полупроводниковых материалов, находят применение полупроводниковые соединения, получаемые путем сплавления или химической обработки чистых элементов СпО (для полупроводниковых выпрямителей), SbZn (для полупроводниковых термобатарей), РЬТе (для фотоэлектрических приборов и термоэлементов) и др.  [c.389]

На рис. 8-21 показан элемент генератора Jsote , который состоит из легких термоэлектрических панелей [165]. Излучатель, выполненный из пластинки серебра толщиной 0,05 мм, покрыт слоем SiO толщиной 0,08 мм служит одновременно для сброса тепла с холодной стороны панели (е=0,9) и в качестве холодной шины термоэлементов.  [c.200]


Термозлемент — теплоэлектрический прибор, основанный на использовании термоэлектрического эффекта или электротермического эффекта Пельтье и предназначенный для непосредственного преобразования тепловой энергии в электрическую или обратно различают термоэлементы металлические, полупроводниковые и комбинированные [9].  [c.155]

Мы пользовались до сих пор для определения величины потока и всех связанных с ним величин обычными единицами энергии и мощности, например, джоулями и ваттами. Такого рода энергетические измерения и выполняются, когда приемником для света является универсальный приемник, например, термоэлемент, действие которого основано на превращении поглощенной световой энергии в тепловую. Необходимо, однако, иметь в виду, что гораздо чаще мы используем в качестве приемников специальные аппараты, реакция которых зависит не только от энергии, приносимой светом, но также и от его спектрального состава. Такими весьма распро-страненными селективными приемниками являются фотопластинка, фотоэлемент и особенно человеческий глаз, играющий исключительно важную роль и при повседневном восприятии света, и как приемник излучения во многих оптических приборах.  [c.51]

Основываясь на законах температурного излучения, мы можем определять температуру раскаленных тел. Если испускающее тето является черным (или достаточно к нему приближается), то для определения его температуры можно воспользоваться законами черного излучения. По существу дела для сильно нагретых тел (выше 2000° С) измерения температуры при помощи термоэлементов, болометров и т. п. не особенно достоверны. Таким образом, в этой области температур и выше единственным надежным способом измерения температуры являются способы, основанные на законах черного излучения. Эти способы проверены не только сопоставлением с данными других термометрических методов в тон области, где последние надежны, но и путем изучения относительного распределения энергии по спектру, что позволяет найти температуру излучателя путем сопоставления экспериментальных данных с теоретическими формулами.  [c.701]

Рассчитать мощность, поглощаемую термоэлементом, если отверстие черного тела есть квадрат со стороной 4 мм, расположенной перпендикулярно к оси линзы. Линза (диаметр 40 мм, фюкусное расстояние 40 см) отображает отверстие на термоэлемент в натуральную величину потери на отражение и поглощение в лнн.зе равны 9%, потери на отражение от термоэлемента — 1%. Температура черного тела Т = 1000 К.  [c.904]

Если тело нагрето до достаточно высокой температуры (выше 2000 °С), то из.мерения температуры при помощи термоэлементов или болометров недостаточно надежны. В этой области температур и выше единственными методами, дающи.ми достоверные результаты, являются методы, основанные на законах теплового излучения.  [c.147]

Для дальнейшего развития электромагнитной теории важно было получить экспериментальное доказательство наличия светового давления. Такой опыт был впервые осуществлен Лебедевым. Идея опыта заключалась в следующем. Легкий подвес на тонкой кварцевой нити, по краям которого прикреплялись тонкие и легкие крылыщ-ки (рис. 28.3), помещался в стеклянный сосуд, в котором был тщательно откачан воздух образовались, таким образом, чувствительные крутильные весы. Одно из крылышек делалось с обеих сторон зеркальным, а другое с обеих сторон было, покрыто платиновой чернью. Свет при помощи системы линз и зеркал направлялся на одна из крылышек, оказывал на него давление и вследствие полученного механического момента весь подвес поворачивался на некоторый угол. Угол поворота крутильных весов измерялся по отклонению зайчика, отбрасываемого маленьким укрепленным на подвесе зеркальцем. Энергия светового потока регистрировалась при помощи термоэлемента. Зная угол поворота и световую энергию, можно было проверить формулу (28.2).  [c.185]

Детектор, регистрирующий свет, прошедший через образец (или отраженный от него), обязательно должен отвечать исследуемой спектральной области. В далекой и средней инфракрасных областях используются термоэлементы (термопары) и болометры. В видимой области спектра и в ближнем ультрафиолете используются фотосопротивления, фотоумножители. При работе в глубо/ком ультрафиолете (К(о> >6 эВ) вся система — источник излучения, монохроматор, образец и детектор — должна находиться в вакууме, чтобы предотвратить поглощение ультрафиолетового излучения воздухом.  [c.168]

Упражнение 3. Наблюдение пичковой структуры излучения рубинового ОКГ и получение гигантского импульса. Проведите наблюдение пичковой структуры на разных развертках осциллографа. Определите длительность генерации в зависимости от величины накачки. При фиксированной накачке (напряжение на батарее конденсаторов 950В) оцените число пичков, среднее расстояние между ними и их длительность. Для получения гигантского импульса в резонатор лазера установите кювету с насыщающимся фильтром. При максимальной накачке (напряжение 1000 В ) можно наблюдать гигантский импульс на экране осциллографа. Для уменьшения сигнала перед фотоэлементом установите ослабляющий фильтр из одного или нескольких листов бумаги. Измерьте энергию гигантского импульса с помощью термоэлемента 10. По результатам измерений оцените среднюю мощность пичков и мощность гигантского импульса (длительность последнего на половине высоты полагается равной 2,5-10" с). Отчет составьте по форме, приведенной в приложении 10.  [c.302]

Определим прежде всего количество теплоты подводимой к термоэлементу от верхнего источника теплоты температуры Т , т. е. теплоотдат-чика, в единицу времени. Основной составной частью является теплота Q, перобразуемая в электрическую энергию она равняется согласно уравнению (10.48), поскольку контактная разность потенциалов мала по сравнению с л,  [c.603]


Характер спектральной характеристики ПЛЭ в общем случае определяется тем, относится ли ПЛЭ к тепювым (термоэлементы, болометры, пневматические, оптико-акустические, пироэлектрические ПЛЭ) или к фотоэлектрическим (фоторезисторы, фотодиоды, фототриоды, фотоэлементы, ЭОП, ФЭУ, телевизионные тр ки). Тепловые ПЛЭ неселективны спектральная чувствительность идеального теплового ПЛЭ постоянна во всем оптическом диапазоне (X) = onst. Однако у реальных ПЛЭ спектральный диапазон чувствительности ограничен, например, спектральной полосой пропускания оптических фильтров, используемых как элемент конструкции ПЛЭ. Поэтому спектральную характеристику даже идеализированного теплового приемника сл дует записывать  [c.66]

Паровые холодильные машины, в свою очередь, подразделяют на парокомпрессионные, пароэжекторные и абсорбционные. Кроме того, применяются термоэлектрические холодильные установки, работа которых основана на эффекте Пельтье (1834 г.), заключающемся в том, что при прохождении электрического тока по замкнутой цепи проводников-термоэлементов один из спаев проводников охлаждается, а другой нагревается. К этой же группе холодильных установок относятся устройства, основанные на термомагнитном эффекте Эттингсхаузена. В холодильных установках этого типа хладагент отсутствует.  [c.176]


Смотреть страницы где упоминается термин Термоэлемент : [c.167]    [c.167]    [c.193]    [c.199]    [c.199]    [c.200]    [c.155]    [c.155]    [c.764]    [c.764]    [c.108]    [c.92]    [c.662]    [c.696]    [c.697]    [c.605]    [c.349]    [c.249]   
Смотреть главы в:

Электровоз ВЛ80 руководство по эксплуатации  -> Термоэлемент


Справочник металлиста. Т.1 (1976) -- [ c.155 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.155 ]

Основы теории металлов (1987) -- [ c.93 ]

Ультразвук и его применение в науке и технике Изд.2 (1957) -- [ c.145 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.155 ]



ПОИСК



Задвижки с зажимом с помощью термоэлемента

Коэффициент полезного действия термический термоэлемента

Коэффициенты вириальные термоэлемента

Расчеты термоэлементов

Стенд для проверки на герметичность термоэлементов

Термопара — см .Термоэлемент



© 2025 Mash-xxl.info Реклама на сайте