Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип вариационный возможных перемещений

Модели для анализа напряжений и деформаций часто оказываются более удобными, если представлены в интегральной форме, вытекающей из вариационных принципов механики. Вариационный принцип Лагранжа (принцип потенциальной энергии) гласит, что потенциальная энергия системы получает стационарное значение на тех кинематически возможных перемещениях, отвечающих заданным граничным условиям, которые удовлетворяют условиям равновесия. Поэтому модель представляют в виде выражения потенциальной энергии П системы как разности энергии деформации Э и работы массовых и приложенных поверхностных сил А  [c.158]


Вариационный принцип Лагранжа. В соответствии с гипотезой сплошности тело может рассматриваться как система материальных точек и к нему можно применить принцип возможных перемещений Лагранжа для равновесия системы материальных точек со стационарными неосвобождающими и идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на систему активных сил на любых возможных перемещениях системы была равна нулю.  [c.122]

Воспользовавшись принципом возможных перемещений, для каждого из тел Q можно написать вариационное уравнение  [c.292]

Как было отмечено в предыдущем параграфе, а также в 2.14, линейные задачи механики сплошной среды могут быть представлены л виде вариационного уравнения (интегрального тождества, принципа возможных перемещений и т. д.)  [c.331]

Приводим основные вариационные принципы механики упругого тела в прямолинейной системе координат [2]. Вариационное уравнение Лагранжа, основанное на принципе возможных перемещений (удовлетворяются уравнения статики), имеет вид  [c.9]

Каждое возможное перемещение можно рассматривать как результат бесконечно малого изменения (вариации) одной из обобщенных координат деформации, определяющих положение узлов и стержней рамы. Такое применение принципа возможных перемещений называется вариационным методом.  [c.333]

В 1788 г. появилось сочинение Ж- Лагранжа Аналитическая механика , в котором вся механика была изложена строго аналитически на основе принципа Даламбера и принципа возможных перемещений. При этом Лагранжем были получены дифференциальные уравнения движения механической системы в обобщенных координатах. Дальнейшее развитие аналитических методов, предложенных Лагранжем для исследования движения и равновесия несвободных механических систем, привело к установлению ряда дифференциальных и вариационных принципов механики.  [c.16]

Воспользуемся для примера вариационным принципом Лагранжа, который заключается в том, что вариация работы внутренних и внешних сил на возможных перемещениях, согласующихся с геометрическими граничными условиями, равна нулю. При этом предполагается, что во всех точках тела не возникает разгрузка (другими словами, рассматривается вариационный принцип Лагранжа для нелинейно-упругого тела). Вариация работы внутренних сил 6J7 определяется выражением  [c.306]


В 71 и 72 нами были изложены два хорошо известных в теории упругости вариационных принципа принцип минимума потенциальной энергии, который также называется принципом возможных перемещений, и принцип минимума дополнительной работы, на который ссылаются как на принцип Кастильяно.  [c.219]

Вариационный принцип Лагранжа представляет собой прямой результат применения к упругому телу начала возможных перемещений. Пусть тело находится в равновесии под действием внешних сил Ft которые совер-  [c.259]

Важную роль в развитии теории упругости сыграли работы русских и советских ученых. Фундаментальные результаты в развитии принципа возможных перемещений, вариационных принципов механики, теории удара, а также интегрирования уравнений динамики принадлежат М. В. Остроградскому. А. В. Гадолиным была решена важная для практики артиллерийского дела задача о напряженном состоянии составных слоистых труб, подвергающихся действию внутреннего давления (развитие задачи Лямэ). X. С. Головиным  [c.10]

К первому классу относятся принцип возможных перемещений Бернулли, принцип сил инерции Д Аламбера, принцип наименьшего принуждения Гаусса и принцип прямейшего пути Герца. Все эти вариационные принципы можно охарактеризовать как дифференциальные принципы, поскольку они вводят в качестве характерного признака действительного движения свойство движения, которое имеет значение для одного-единственного момента или элемента времени. Для систем механики все эти принципы эквивалентны и законам- движения Ньютона, и между собою. Но все они страдают тем недостатком, что имеют смысл только для механических процессов и что их формулировка делает необходимым пользоваться специальными координатами точек рассматриваемой материальной системы. Их формулировка, в зависимости от выбора координат точки, совершенно различна, и даже, чаще всего, относительно сложна и мало наглядна.  [c.582]

Применение принципа к сплошной среде. Применительно к сплошной среде уравнение вариационного принципа возможных перемещений имеет вид  [c.486]

В настоящем параграфе для того, чтобы выпуклее подчеркнуть аналогию вариационных принципов (симметрию формулировок), мы внесли некоторые изменения в традиционную терминологию. Принцип возможных перемещений назван принципом возможных изменений перемещений, а принцип возможных изменений напряжений — принципом возможных изменений сил. Кроме того вместо слова работа, традиционно используемого в формулировке принципа использован термин возможная работа. Примечание об этом термине дано в 15.15.  [c.494]

Вариационный принцип возможных перемещений (вариационный принцип Лагранжа). Пусть х, ру и о относятся к одному состоянию тела ), т. е. соблюдены условия равновесия в области и на ее границе, — удовлетворены уравнения (15.15) и (15.16), а вместо и и рассматриваются их вариации бн и Ьг (и), которые считаем кинематически возможными, т. е. удовлетворяющими условиям совместности деформаций  [c.517]

В гл. 3 с единых позиций принципа возможных перемещений рассмотрены формулировки задач статики, устойчивости и динамики. Полученные уравнения в вариациях для упругих консервативных систем являются голономными и представляют условия стационарности соответствующих функционалов, записанных в перемещениях. Вид самих функционалов в большинстве случаев не приводится, поскольку для дальнейшего решения необходимы лишь вариационные формулировки. В общем случае показано, как с использованием этих формулировок удается получить разрешающие дифференциальные уравнения или приближенные решения.  [c.71]

Тогда с учетом введенных аппроксимаций и нелинейных связей (3.109) рассматриваемое тело с бесконечным числом степеней свободы будет приближенно соответствовать нелинейной механической системе с конечным числом степеней свободы. И вместо вариационного условия (3.111) для конечно-элементного аналога можно будет записать принцип возможных перемещений в следующем виде  [c.107]


После выполнения подготовительных операций приступим к вариационной формулировке задачи статики. Рассмотрим кольцевой элемент оболочки вращения, нагруженный внешними поверхностными нагрузками и реакциями отброшенных частей. Для получения разрешающих. уравнений воспользуемся принципом возможных перемещений. Чтобы считать независимыми переменными как коэффициенты вектора обобщенных перемещений X , так и коэффициенты вектора производных , введем с помощью множителей Лагранжа (х) условие связи (4.112), записанное для возможных перемещений, тогда  [c.152]

Уравнение равновесия шпангоута (4.167) можно получить другим способом, не рассматривая силовые условия сопряжений (4.157). При вариационном способе получения уравнений равновесия достаточно лишь кинематических условий (4.164). Рассмотрим целиком узел конструкции (см. рис. 4.14), включая шпангоут и оболочку. Согласно принципу возможных перемещений в положении равновесия для рассматриваемого узла будем иметь следующее условие  [c.166]

Для получения вариационной формулировки воспользуемся принципом возможных перемещений (5.26). Отдельного рассмотрения требует выражение для работы внутренних сил, при преобразовании которого необходимо принимать во внимание соотношения упругости, представленные для материала обшивок в форме (5.29)  [c.205]

Воспользовавшись, как и в 5.2, принципом возможных перемещений и соотношениями упругости (5.65), получим вариационную формулировку задачи статики, аналогичную (5.28)  [c.221]

Согласно принципу возможных перемещений сумма возможных работ всех внешних и внутренних сил упругой пластины на всяком возможном бесконечно малом изменении перемещений равна нулю. Применительно к изгибу тонких прямоугольных пластин вариационное уравнение этого принципа имеет вид [317]  [c.391]

В силу больших математических трудностей получение точных аналитических решений многих задач теории упругости в форме, доступной для практических целей, затруднительно или невозможно. В этом случае можно использовать вариационные методы, которые позволяют получать приближенные решения задач теории упругости в аналитической форме. При этом приближенно удовлетворяются дифференциальные уравнения или граничные условия, а в отдельных случаях—и те и другие. В основе вариационных методов лежат вариационные принципы, например, принцип возможных перемещений Лагранжа.  [c.449]

Статические уравнения эластики оболочки следуют из принципа возможных перемещений в форме вариационного уравнения Лагранжа  [c.140]

Наиболее последовательный путь получения упрощенных уравнений равновесия -вариационный. С помощью принципа возможных перемещений и соотношений (9.6.20), (9.6.21) получены уравнения  [c.156]

О вариационных принципах. Вариационными принципами классической механики называют общие закономерности механического движения, позволяющие из совокупности кинематически возможных движений механической системы, т. е. движений, допускаемых наложенными на систему связями, выделить действительное движение, которое она будет совершать в заданном силовом поле. При этом дифференциальные вариационные принципы дают критерий истинного движения, отнесенный к некоторому моменту времени (например, принцип возможных перемещений), а интегральные — к конечному интервалу времени (например, принцип Гамильтона—Остроградского).  [c.308]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]

При нарушении условий простого нагружения тела напряженно-деформированное состояние в случае неупругого поведения материала зависит от пути нагружения, и плотность энергии деформации не удается представить однозначной функцией компонентов деформации или перемещения в конце пути нагружения. Поэтому вариационная формулировка (1.114), (1.115) не имеет места, но сохраняет силу принцип возможных перемещений в форме (1.111). В этом случае для описания неупругого поведения материала обычно используют теорию пластического течения [27, 40].  [c.46]

В этом смысле вариационному уравнению Лагранжа соответствует принцип возможных перемещений, уравнению Кастильяно — принцип возможных напряженных состояний, а полным и другим частным— различные общие и частные вариационные принципы (см. гл. 1, 2).  [c.143]


Дифференциальные уравнения движения (равновесия) не всегда удобны при использовании численных методов, поскольку требуют повышенной гладкости функций по сравнению со слабой формой уравнений (формулируемой в виде уравнения принципа возможных перемещений). При квазистатическом деформировании тел при некоторых ограничениях на внешние силы и используемые уравнения можно сформулировать вариационные принципы относительно скоростей (приращений) [24, 27, 47, 73, 75, 78, 79, 81, 84, 88, 97, 98, 119]. Функционал, используемый в вариационном принципе, позволяет в некоторых случаях выделить каче-  [c.10]

Дан альтернативный вывод уравнений слоя нулевого приближения вариационным методом с использованием принципа возможных перемещений.  [c.26]

Второй группой соотношений являются определяющие уравнения композитного элемента, установленные в работе вариационным методом на основе принципа возможных перемещений  [c.216]

В разделе рассмотрены с позиций принципа возможных перемещений различные вариационные формулировки задач статики, устойчивости и динамики твердого деформируемого тела. В общем случае показано, как с использованием этих формулировок удается получить разрешающие дифференциальные уравнения или приближенные решения.  [c.5]

Прицип Даламбера — Лагранжа, рассмотренный в 46, принадлежит к дифференциальным вариационным принципам механики. Возможные перемещения бг точек материальной системы следует рассматривать в случае нестационарных связей  [c.184]

Важнейшим и наиболее общим дифференциальным вариационным принципом классической механики является принцип возможных перемещений, изложенный в XVII и XVIII главах этого курса.  [c.390]

Для решения более сложных задач широкое применение находят вариационные методы, сущность которых заключается в том, что система уравнений равновесия, условий шастичности и граничных условий заменяется эквивалентным ей принципом возможных перемещений. Использование данного метода возможно лишь при наличии данных (экспериментальных, численных и т.п ) о скоростях деформаций в различных точках исследуемой конструкции, необходимых для нахождения функции распределения скоростей деформации по сечению, отвечающему минимальному значению энергии деформации. Изложенный метод, с связи с этим, по с ти своей является приближенным, гюскольк минимизирующие функции подбираются эмпирически.  [c.99]

Большую популярность за последнее время приобрел в а р и а ц и о н н ы й мет о д В. 3. Власова. В этом методе искомая функция зависит от двух переменных и удовлетворяет дифференциальному уравнению в частных производных (например, прогиб в задаче об изгибе упругой пластинки). Эта функция выражена в виде произведения двух функций, из которых одна представляет заданную функцию от одного переменного, д другая — искомую функцию от другого. Вместо искомых постоянных коэффициентов, рассматриваемых в методе Бубнова — Галеркина (а также в методе Ритца — Тимошенко) и определяемых линейными алгебраическими уравнениями, в вариационном методе Власова, построенном на прямом применении принципа возможных перемещений, рассматривается система искомых функций.  [c.65]

При этом оказывается, что метод Ритца тесно связан с вариационным принципом Лагранжа и вытекает из него. Согласно принципу Лагранжа, если упругое тело находится в равновесии, то работа всех сил (внешних п внутренних) па любом возможном перемещении равна нулю  [c.191]

Принцип Фосса ). В принципе Гёльдера вариация 6q представляет собой виртуальное перемещение в момент t, тогда как соответствующая точка q -f- 6g проходится в момент t + bt. Чтобы избежать этого положения, предпринимались попытки сформулировать вариационный принцип таким образом, чтобы bq было возможным перемещением в интервале времени 6t. Один из таких вариационных принципов приводится ниже.  [c.535]

По существу говоря, вариационные принципы не являются ни первыми, ни единственными в отношении выделения осуществляющихся в природе движений из всех возможных движений. Уравнения движения Ньютона также выделяют из всех возможных движений — точнее говоря, из всех мыслимых движений — естественные движения, удовлетворяющие аксиомам механики Ньютона, среди которых первая аксиома является частным случаем обобщенного принципа прямейшего пути Герца. Различие в характере выделения группы естественных движений с помощью уравнений Ньютона от выделения их с помощью вариационных принципов состоит в том, что в первом случае условием является только соответствие аксиомам механики, а во втором это соответствие выражено через экстремальное условие, для применения которого небходимо сравнение возможных движений между собой. Нечто аналогичное уже имело место и в принципе возможных перемещений.  [c.869]

I) в некоторых литературных источниках в формулировке теоремы вместо слова работа используется термин возможная работа (см., например, И. М. Рабинович. Курс строительной механики. Часть II. Гос. изд-во литер, по строительству и архитектуре. М. 1954). При этом по смыслу изложения под указанным термином имеется в виду абстракция, отличающаяся от действительной работы тем, что силы, производящие работу, могут относиться к одному состоянию системы, а перемещения им соответствующие — к другому. Вместе с тем дается определение этого понятия в параграфе, посвященном принципу возможных перемещений, как работы сил на возможном перемещении, хотя в самой формулировке указанного здесь принципа термин возможная работа не используется и вместо него применено просто слово работа. Аналогичное последнему дается определение возможной работы и в классическом курсе П. Аппеля (П. Аппель. Теоретическая механика. Том первый. Пер. с пятого французского издания И. Г. М а л к и и а. Физматгиз. 1960). Как правило, в формулировке принципа возможных перемещений не используется термин возможная работа и в других литературных источниках (см., например К. Л а н-ц о ш. Вариационные принципы механики. Пер. с англ. В. Ф. Гантмахера. Под ред. Л. С. По лак а. Мир . 1965 А. И. Лурье. Теория упругости. Наука 1970 В. В. Новожилов. Теория упругос ги. Оборонгиз. 1958 и др.)  [c.498]

Эфф. методы изучения равновесия и движения несвободной механич. системы (см. Связи механические) дают вариационные принципы механики, в частности возможных перемещений принцип, найм, действия принцип, а также Д Аламбера принцип. При решении задач М. широко используют вытекающие из её законов или принципов дяфференц. ур-ния движения материальной точки, твёрдого тела и системы материальных точек, в частности ур-ния Лагранжа, канонич. ур-ния, ур-ния Гамильтона — Якоби, а в М. сплошной среды — соответствующие ур-ния равновесия или движения этой среды, ур-ние неразрывности (сплошности) среды и ур-ние энергии.  [c.127]

Любой из приведенных в гл.1.4 функционалов может быть использован для построения конечно-элементных соотношений, т.е. для решения задач механики деформируемого тела с помощью метода конечных элементов. Используя принцип возможных перемещений (1.4.14), придем к построению МКЭ в варианте метода перемещений. Принцип возможных напряжений (1.4.50) приведет к МКЭ в варианте метода сил. При использовании смешанных вариационных принцицов (1.4.58), (1.4.61) получим смешанные формулировки МКЭ. Модифицированный принцип возможных перемещений (1.4.62), допускающий независимую аппроксимацию компонентов перемещений на границе и по объему каждого из конечных элементов, приводит к так назы,-ваемым гибридным формулировкам МКЭ.  [c.63]


Путем линеаризации нелинейного вариационного уравнения принципа возможных перемещений Лагранжа для задач теории малых упруго пластических деформаций и теории пластического теченггя ниже получены линейные соотношения для методов упругих решений, дополнительных деформаций, переменных параметров упругости, метода Ньютона-Канторовича и метода последовательных нагружений с коррекцией погрешноспг.  [c.232]

Во второй части книги рассматриваются вопросы применения МКЭ к решению нелинейных задач МДТТ. Результирующие линеаризованные уравнения равновесия (движения) относительно приращений перемещений получаются из принципа возможных перемещений. При квазистатическом деформировании уравнения равновесия относительно скоростей перемещений получаются из вариационных принципов. Показана тесная связь конечноэлементных уравнений, сформулированных относительно приращений и скоростей. Приведен вывод дискретных уравнений движения (равновесия) относительно приращений (скоростей) узловых перемещений. Рассматриваются процедуры пошагового решения нелинейных задач и определения напряжений для различных моделей материалов. Предложены алгоритмы решения задач устойчивости и контактных задач.  [c.12]

Принцип возможных перемещений можно использовать для решения как статических, так и динамических задач. Вариационные принципы, которые приводятся в этом разделе, можно использовать для решения только квазистатических задач (вследствие того, что инерционные силы зависят от скоростей перемещений, их нельзя ввести в функционал). В нелинейной теории упругости вариационные принципы обычно формулируются относительно полей перемещений, деформаций и напряжений (например, Ху — Васидзу, Хеллингера — Рейсснера, стационарности полной потенциальной энергии и др.). Рассмотрим некоторые вариационные принципы, сформулированные относительно полей скоростей перемещений, деформаций и напряжений, которые справедливы для упругих и неупругих тел.  [c.112]

Получим уравнения деформации слоя эластомера вариационным методом на основе принципа возможных перемещений, который применялся в работах К. Ф. Черныха и Л. В. Миляковой.  [c.47]


Смотреть страницы где упоминается термин Принцип вариационный возможных перемещений : [c.11]    [c.164]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.484 , c.486 , c.517 ]



ПОИСК



Возможные перемещения

Принцип вариационный

Принцип вариационный в Лагранжа (возможных перемещений)

Принцип возможных перемещени

Принцип возможных перемещений

Принцип возможных сил

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте