Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационные методы приближения

Сущность вариационных методов приближенного решения дифференциальных уравнений заключается в том, что задается решение в виде приближенного аналитического выражения, аппроксимирующего искомую функцию в форме последовательности функций  [c.10]

Вариационные методы приближенного решения  [c.223]

ВАРИАЦИОННЫЕ МЕТОДЫ ПРИБЛИЖЕННОГО РЕШЕНИЯ 225  [c.225]

ВАРИАЦИОННЫЕ МЕТОДЫ ПРИБЛИЖЕННОГО РЕШЕНИЯ 227  [c.227]

Если нелинейный оператор А дифференцируем по Фреше, то для нахождения приближенного решения Ах = у применяют метод градиентов и Ньютона-Канторовича метод. В противном случае применяют вариационные методы, наименьших квадратов метод, проекционные методы и проекционно-итеративные методы, сочетающие в себе идеи как проекционные, так и итеративных методов. Иногда можно применить двусторонних оценок метод.  [c.50]


Однако вариационные принципы не позволяют непосредственно находить интегралы систем дифференциальных уравнений движения, вытекающие из теорем динамики. Но применяя эти принципы, можно построить прямые методы приближенного определения закона движения материальной системы. Об этом кратко сказано ниже при рассмотрении конкретных примеров.  [c.181]

Ко второй группе приближенных методов относятся методы, связанные с вариационными принципами и называемые вариационными методами. Эти методы дают возможность получать систему расчетных уравнений рассматриваемой задачи, а также приближенное решение дифференциальных уравнений, не имеющих точного решения.  [c.8]

Последний вопрос связан с выбором аппроксимирующих функций, удовлетворяющих краевым условиям задачи, что в известной мере является произвольным и влияет на получение окончательного результата. Не все вариационные методы допускают контроль характера (приближение сверху или снизу) и степени приближения к действительному решению.  [c.8]

Методы решения двух последних групп являются приближенны ми лишь условно, так как с их помош,ью можно достигнуть любой точности результатов, если решение допускает уточнение в виде учета последующих членов разложения какой-либо величины или построено в форме последовательных приближений, или связано с малым интервалом при определении значения исследуемой функции. Вариационные методы могут оказаться и точными, если уравнения Эйлера—Лагранжа при исследовании экстремума функционала (например, Э) допускают точное решение или задача имеет конечное число степеней свободы (см. задачу 1.5).  [c.9]

Сущность вариационных методов заключается в том, что задается решение в виде приближенного аналитического выражения, аппроксимирующего искомую функцию в форме последовательности функций  [c.12]

Для приближенного интегрирования системы (6.17) наиболее удобным является вариационный метод Бубнова — Галеркина.  [c.207]

Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]


В первом приближении вариационный метод [60, 62] дает для А следующее значение  [c.266]

В случае электрического сопротивления сходимость в вариационном методе гораздо более быстрая, так как величина Со( ) почти постоянна. В пределе при Од=0 и Т- Ь первое приближение приводит к правильной величине р , за исключением членов более высокого порядка по ТМ. Третье приближение дает немного меньшие значения для при промежуточных температурах и соответственно небольшое положительное отклонение от пра-  [c.266]

В рассмотренном выше случае основными неизвестными являются напряжения и потому имеются вспомогательные коэффициенты при варьируемых функциях для напряжений. В этом смысле такой приближенный (вариационный) метод можно отнести к разновидности метода сил.  [c.62]

Заметим, что вариационные принципы наследственной теории упругости допускают и иную трактовку. Вследствие принципа Вольтерра можно применять любой метод для решения задачи обычной теории упругости, и лишь в окончательном результате упругие константы следует заменить операторами. Отсюда следует, в частности, что для нахождения точного или приближенного решения задачи теории упругости может быть применен любой из известных вариационных методов, если в результате решения в окончательном результате появится некоторая комбинация упругих констант, ее можно заменить такой же комбинацией из операторов и расшифровать по известным правилам.  [c.606]

Для прямоугольной пластинки (ахЬ), заделанной с четырех сторон (и при других сложных закреплениях), точного решения задачи нет. Приближенное решение можно получить вариационным методом [см., например, (4.57)—(4.61)], задаваясь одним из выражений  [c.131]

И. Г. Бубнов (1872—1919) разработал новый приближенный метод интегрирования дифференциальных уравнений, блестяще развитый Б. Г. Галеркиным (1871—1945). Вариационный метод Бубнова — Галеркина в настоящее время получил широкое распространение. Большое значение имеют труды И. Г. Бубнова и Б. Г. Галеркина в теории изгиба пластинок. Новые важные результаты, продолжая исследования Галеркина, получил П. Ф. Папкович (1887—1946).  [c.6]

Большинство задач теории упругости сводится к интегрированию дифференциальных уравнений с заданными граничными условиями. Точного решення очень многих важных для практики задач до сих пор не получено, так как интегрирование дифференциальных уравнений, к которым они приводятся, представляет собой большие математические трудности. Поэтому важное значение приобрели вариационные методы, позволяющие эффективно получать приближенные решения дифференциальных уравнений с точностью, достаточной для инженерных расчетов.  [c.153]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Вариационные методы расчета, которые позволяют получать приближенные решения задач о.б изгибе пластин, рассмотрены в 8. Краткие сведения об изгибе пластин при больших прогибах приведены в 9. На основе полученных там результатов можно оценить пределы применимости линейной теории, базирующейся на гипотезе об отсутствии деформаций в срединной плоскости.  [c.52]

Известные вариационные методы осно ваны на приближенном решении уравнения (7.29) для более узкого класса функций. При этом принимают 1 2 п,  [c.121]


Рнс. 66. Показатель степени г в степенном законе FJ времени релаксации для электрон-ЬО-фононного взаимодействия. Эффективные времена релаксации для подвижности fi, термо-э.д.с. Ф и постоянной Холла Л, полученные вариационным методом, приближенно совпадают прн высоких и низких температурах. В этом случае предположение о существовании единого времени релаксации представляется обоснованным. (По Эренрайху (J. Appl.  [c.246]

Метод решения вариационного уравнения Лагранжа. Уравнение Лагранжа (6.41) дает удобный метод приближенного решения задач МДТТ без дифференцирования напряжений. Это особенно важно при решении задач теории пластичности. Представим выражение Oijbeij в виде  [c.128]

Установленная здесь классификация не является общепринятой. Одни авторы считают прямыми те методы, которые приводят краевую задачу теории упругости к алгебраическим уравнениям, относя к этим методам и соответствующие вариационные методы (Ритца — Тимошенко, Бубнова — Галеркина) другие считают прямыми вое приближенные методы и т. д.  [c.9]

При использовании вариационных методов большое значение имеет оценка полученных результатов по отношению к действительным значениям. Известно, что метод Ритца — Тимошенко дает приближение к действительному значению сверху, а метод Треффца снизу относительно других вариационных методов этот вопрос  [c.14]

Если пластинка не имеет двух противоположных шарнирно опертых краев, то прогиб не может быть представлен рядом (а), и точное решение сильно осложняется. В последнем случае часто применяют приближенные методы — вариационные методы Рит-ца — Тимошенко, Бубнова — Галеркина, Треффца, Власова — Канторовича, метод конечных разностей и т. д.  [c.185]

Главным достоинством вариационного метода является то, что в этом случае коэффициенты и Lj 2 постоянны и имеют вид (14.23). Именно эти коэффициенты требуются для расчета проводимостей они более важны, чем функции с. Таким образом, если взята пробная функция с,, имеющая некоторые подгоночные параметры, и эти параметры выбраны так, что величина ( С(, с,) максимальна при условии (S- ,, f) = jf, с,), то такое значение (tp, с,) отличается от требуемого только членами порядка (6с, ос), где ос= с—с,. Соответственно если взят другой класс пробных функций и если предыдущая операция дает большее значение (ср, с,), то эта новая величина является лучшим приближением. С другой стороны, успех метода пока зависит от выбора пробной функции. Семейство пробных функций образует подпространство в гильбертовом пространстве, составленном из функций с. Требуемое решение имеет компоненту ос, ортогональную к этому подпространству ошибка в величине (9, с) второго порядка малости относительно ос, но если eMeii TBO пробных функций выбрано плохо, то 8с может быть еще достаточно большим, чтобы эти члены второго порядка были значительными.  [c.264]

Вариационный метод. Автор использовал приближенный метод (см. п. 35), который несколько отличался от метода Фрелиха (был более эмпирическх1м), но давал большей частью те же конечные результаты. Предполагалось, что состояния отдельных электронов в нормальной фазе включают эффекты слабо11 связи с виртуальными состояниями высокой энергии и что большая часть разности энергий между сверхпроводящей и нормаль-  [c.771]

Для решения более сложных задач широкое применение находят вариационные методы, сущность которых заключается в том, что система уравнений равновесия, условий шастичности и граничных условий заменяется эквивалентным ей принципом возможных перемещений. Использование данного метода возможно лишь при наличии данных (экспериментальных, численных и т.п ) о скоростях деформаций в различных точках исследуемой конструкции, необходимых для нахождения функции распределения скоростей деформации по сечению, отвечающему минимальному значению энергии деформации. Изложенный метод, с связи с этим, по с ти своей является приближенным, гюскольк минимизирующие функции подбираются эмпирически.  [c.99]

Вариационное уравнение дает возможность получения приближенного решения задачи теории пластичности прямыми вариационными методами, в частности методом Ритца.  [c.307]

Среди прямых методов решения вариационных задач наиболее широкое применение получили метод Ритца, метод Канторовича н метод Бубнова—Галеркина — метод приближенного решения диффе-  [c.97]

При использовании вариационных методов большое значение имеет оценка полученных результатов по отношению к действительным значениям. Известно, что метод Ритца —Тимошенко дает приближение к действительному значению сверху, а метод Треффца—снизу относительно других вариационных методов этот вопрос остается открытым. В 1970 г. Б. Ф. Власовым [21] предложен метод двусторонних оценок по энергии, между которыми должны лежать действительные значения искомой функции.  [c.14]

Вариациопные принципы и основанные на них вариационные методы играют важную роль в механике деформируемого твердого тела как в части получения дифференциальных уравнений задач, так и в части построения приближенных решений. К методам получения прнближеш1ых решений относятся методы Ритца — Тимошенко, Канторовича — Крылова, Бубнова — Галеркина и др. В основе всех этих методов лежат излагаемые ниже вариационные принципы в той или иной их комбинации. Хотя получение приближенных решений на основе этих методов при наличии мощных ЭВМ постепенно отходят на второй план, они все еще находят применение. В процессе применения ЭВМ на подготовительном этапе есть необходимость задачу интегрирования систем дифференциальных уравнений свести к задаче решения систем алгебраических уравнений. В этой части вариационные методы завоевывают все более и  [c.186]


Многие задачи прикладной теории упругости удается решать лишь приближенными методами, среди которых важное место занимают вариационные методы и в первую очередь те, которые основаны на применении начала возможных перемеш ений Лаграннга.  [c.189]

Вариационными методами называются методы точного и приближенного решения задач, основанные на использовании экстремальных свойств некоторых функционалов. Здесь мы рассмотрим так называемый метод Ритца, а также близкий к нему, хотя и не основанный непосредственно на использовании вариационного принципа, метод Бубнова.  [c.388]

Рассматриваемый метод позволяет получить удовлетворительное приближенное сооотношение дисперсии, однако не позволяет точно определить напряжения в элементе, которые оказываются разрывными на границах [31, 87]. Более общие вариационные методы приводят к лучшим результатам по напряжениям, а также к более точному соотношению дисперсии [126].  [c.297]

Метод Рэлея—Ритца является универсальным методом приближенного решения основной задачи вариационного исчисления — задачи определения экстремумов или стационарных значений функционалов. Сущность этого метода состоит в замене задачи поиска стационарных значений функционалов принципиально более простой задачей поиска стационарных значений функций нескольких переменных.  [c.64]


Смотреть страницы где упоминается термин Вариационные методы приближения : [c.266]    [c.738]    [c.8]    [c.200]   
Теория ядерных реакторов (0) -- [ c.240 , c.243 ]



ПОИСК



Метод вариационный

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте