Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алгоритм решения задач устойчивости

При решении примеров 13.1-13.3 использовали уравнения второго порядка. Это традиционный алгоритм решения задач устойчивости прямолинейных стержней. Однако этот алгоритм не всегда эффективен при решении задач с более сложными граничными условиями, чем шарнирное закрепление (см. например, последний случай, показанный на рис. 13.13). Для этого случая из рассмотрения формы осевой линии стержня после потери устойчивости был определен коэффициент  [c.522]


Рассмотрим особенности алгоритма решения задач устойчивости упругих систем при действии следящих консервативных сил. К таким задачам может быть применен статический метод, что упрощает методику их решения.  [c.217]

Алгоритм решения задач устойчивости  [c.83]

Особенность алгоритма решения задачи устойчивости — объединение двух этапов безусловной минимизации по п и поиска корня нелинейного уравнения D (Я, п) = 0. Задача формулируется следующим образом найти N действительных корней С, принадлежащих пространству R  [c.85]

Приведенные оценки имеют место, если рассмотренные алгоритмы решения задачи Коши устойчивы. Проблема конструкции устойчивого алгоритма при заданном способе аппроксимации сводится к установлению связи Дг и й, обеспечивающей вычислительную устойчивость.  [c.175]

При решении задач устойчивости и колебаний имеем однородную систему и Я = 0. Для краевых задач механики, описывающихся дифференциальными уравнениями вида (3.74), разработаны эффективные алгоритмы численных решений [8, 20, 33]. Рассмотрим способ решения, основанный на делении одномерной системы по координате S на отдельные элементы и стыковки отдельных элементов по геометрическим и силовым факторам с использованием матриц жесткости.  [c.93]

Таким образом, решение задач устойчивости стержневых систем имеет тот же алгоритм и те же недостатки существующих методов, что и в задачах динамики. МГЭ позволяет освободить решение задач устойчивости от указанных недостатков. Построение соотношений устойчивости МГЭ проведем при "мертвых" нагрузках. Введем допущения  [c.179]

Решение задачи Копти продольно-поперечного изгиба (4.4) широко используется в методе перемешений и методе начальных параметров для составления трансцендентных уравнений устойчивости [182, 307, 26]. Однако, оно может быть применено для решения задач устойчивости плоских и пространственных стержневых систем в рамках принципиально другого алгоритма —МГЭ. Для упругой системы можно составить уравнение устойчивости МГЭ типа (1.40). Стержни, не загруженные сжимающей силой F, должны иметь в уравнении (1.40) блок фундаментальных функций статического изгиба (2.11), а сжатые стержни — блок фундаментальных функций продольно-поперечного изгиба (4.4) с добавлением нормальных сил (для плоских задач устойчивости).  [c.181]

Для каждой критической силы можно построить и формы потери устойчивости стержневой системы, аналогично построению форм колебаний (см. п. 3.1). Ниже представлены примеры решения задач устойчивости различных упругих систем по алгоритму МГЭ. Поскольку используются уравнения (2.11), (4.4), относящиеся к статическому деформированию, то вся процедура решения задач устойчивости относится к статическому методу.  [c.182]


Представим пример решения задачи устойчивости плоской рамы по алгоритму МКЭ в форме метода перемещений (см. п. 1.6).  [c.233]

Для решения задач устойчивости прямоугольных пластин используем алгоритм численно-аналитического варианта МГЭ, вариационный метод Канторовича-Власова и дифференциальное уравнение технической теории устойчивости (7.66)  [c.453]

В задачах устойчивости оболочек применение этих методов сдерживалось высоким порядком систем алгебраических уравнений, что обусловливается значительной изменяемостью функций, описывающих как исходное, так и нейтральное состояние. Возможности эффективного применения конечно-разностных методов появились в последние годы в связи с внедрением в практику исследований ЭВМ. Эти методы обладают несомненным достоинством по сравнению с другими методами. Они позволяют стандартным образом решать задачи устойчивости при различных граничных условиях, различных нагрузках, в том числе полосовых и локальных. При этом не возникает затруднений и с учетом действительного характера докритического состояния. Ниже дается изложение одного эффективного алгоритма решения задач конечно-разностным методом [6.13]. Этот алгоритм основан на представлении дифференциальных уравнений устойчивости в матричной форме и решении алгебраических разностных уравнений матричным методом исключения по Гауссу. Алгоритм приводит к простым рекуррентным зависимостям, позволяющим стандартно и с большой точностью решать широкий круг задач устойчивости оболочек при осесимметричной нагрузке.  [c.88]

В данной главе построены уравнения и алгоритм численного решения задач устойчивости тонких оболочек вращения, основанные на уточненном подходе к проблеме. Обсуждаются особенности, возникающие при варьировании нелинейных уравнений равновесия и наличии односторонних ограничений. Показано, что известные результаты можно рассматривать как частный случай в рамках этого подхода. Изучены задачи устойчивости цилиндрических оболочек, нагруженных давлением или контактным давлением со стороны упругого основания, сферических оболочек под действием штампов разной формы и давления упругого основания, сильфонов, подкрепленных кольцами.  [c.79]

Алгоритм решения задач по потере устойчивости тел  [c.226]

МЕТОДИЧЕСКИЕ ОСНОВЫ АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ПРОЧНОСТИ, УСТОЙЧИВОСТИ И КОЛЕБАНИЙ  [c.9]

Точность результатов, получаемых при конкретном решении задач устойчивости оболочек вращения с помощью изложенного алгоритма, существенным образом зависит от количества узлов N, использованных в конечно-разностной схеме. В связи с этим возникает два вопроса.  [c.192]

К положительным элементам одномерного варианта МГЭ (простота логики формирования разрешающей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобщенного стержня из разрешающей системы и т.д.) добавляются существенно важные для расчета пластинчатых систем факторы. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причине уравнение (6.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [7]. Как будет показано ниже, этот момент позволяет существенно повысить точность решения задач устойчивости тонких пластин по предложенному алгоритму МГЭ. Использование обобщенных функций для описания нагрузки ц х, у) в (1.20) также приводит к неожиданным результатам. Реальной становится возможность вычисления касательных и нормальных напряжений в точках приложения сосредоточенных нагрузок. В этих точках, в частности, поперечная сила =0,25 (1/Ах) 00 при Ах 00 [3, с. 173]. Здесь можно отметить, что неопределенность в  [c.198]


Комбинированные методы и алгоритмы анализа. При решении задач анализа в САПР получило достаточно широкое распространение временное комбинирование численных методов. Наиболее известны рассмотренные выше алгоритмы ФНД для численного интегрирования ОДУ, являющиеся алгоритмами комбинирования формул Гира. Другим примером временного комбинирования методов служат циклические алгоритмы неявно-явного интегрирования ОДУ. В этих алгоритмах циклически меняется формула интегрирования — следом за шагом неявного интегрирования следует шаг явного интегрирования. В базовом алгоритме неявно-явного интегрирования используют формулы первого порядка точности — формулы Эйлера. Такой комбинированный алгоритм оказывается реализацией А-устойчивого метода второго порядка точности, повышение точности объясняется взаимной компенсацией локальных методических погрешностей, допущенных на последовательных неявном и явном шагах. Следует отметить, что в качестве результатов интегрирования принимаются только результаты неявных шагов, поэтому в алгоритме комбинированного неявно-явного интегрирования устраняются ложные колебания, присущие наиболее известному методу второго порядка точности — методу трапеций.  [c.247]

Разностная схема (1.86), (1.87) устойчива и аппроксимирует исходную краевую задачу (1.6) со вторым порядком точности относительно шага. Кроме того, она регулярна по направлениям осей X и у, что позволяет создавать быстродействующие алгоритмы решения результирующей системы алгебраических уравнений.  [c.48]

Кроме ошибок аппроксимации, существует другой источник ошибок численного решения, связанный с погрешностью вычислений. В зависимости от вычислительного алгоритма могут уменьшаться и возрастать ошибки округления. В случае возрастания говорят, что вычислительный метод неустойчив, в случае убывания — устойчив. Для решения задач используют устойчивые методы. Один и тот же алгоритм может быть устойчив при выполнении некоторых условий и неустойчив при их нарушении. Условие неустойчивости является внутренним свойством разностной схемы и не связано с исходной дифференциальной задачей. Исследование устойчивости обычно проводится для линейных задач с постоянными коэффициентами, и результаты исследования, полученные для линейных систем, переносят на нелинейные уравнения газовой динамики, но при этом надо иметь в виду, что  [c.271]

Для того чтобы получить устойчивые алгоритмы решения смешанной задачи, перейдем к рассмотрению модифицированной задачи, введя на поверхности 51 краевое условие  [c.598]

Для этой цели обычно используется спектральный критерий устойчивости Неймана [8], основанный на анализе спектра оператора дискретной задачи. Другое более практическое определение устойчивости алгоритма, связанное с понятием корректности задач с непрерывным аргументом, предложено в [7]. В этом случае счетная устойчивость алгоритма устанавливает непрерьшную зависимость решения от входных данных, когда малым вариациям исходных данных соответствуют малые вариации решения. Этот подход и будет использован ниже при решении задач теплопроводности в элементах ВВЭР.  [c.175]

При решении задач изгиба и устойчивости весьма пологих оболочек в условиях мгновенного упругого деформирования в качестве ведущего параметра решения используем относительный прогиб в характерной точке I (в вершине — для замкнутых, на контуре центрального отверстия — для открытых оболочек). Это позволяет при необходимости получить всю кривую q(l), т. е. рассмотреть и закритическое состояние. Так как эта зависимость имеет достаточно плавный характер, в алгоритме решения указанных задач используем постоянный шаг. Численно величину критической нагрузки, соответствующую осесимметричной потере устойчивости в большом (асимметричная бифуркация для таких оболочек не наблюдается), определяем по перемене знака приращения нагрузки (Д -<0) на некотором шаге по ведущему параметру.  [c.50]

В данном разделе рассматриваются вопросы теории метода граничных элементов (МГЭ) и его практического применения для решения задач статики, динамики и устойчивости стержневых систем. Основное внимание уделено изложению алгоритма метода, математическим моделям расчетных схем и реализации соотношений на персональных компьютерах.  [c.10]

Приведенный алгоритм сведения задачи Коши к интегральным соотношениям далее применяется для решения задач статики, динамики и устойчивости различных упругих систем.  [c.23]

Во второй части книги рассматриваются вопросы применения МКЭ к решению нелинейных задач МДТТ. Результирующие линеаризованные уравнения равновесия (движения) относительно приращений перемещений получаются из принципа возможных перемещений. При квазистатическом деформировании уравнения равновесия относительно скоростей перемещений получаются из вариационных принципов. Показана тесная связь конечноэлементных уравнений, сформулированных относительно приращений и скоростей. Приведен вывод дискретных уравнений движения (равновесия) относительно приращений (скоростей) узловых перемещений. Рассматриваются процедуры пошагового решения нелинейных задач и определения напряжений для различных моделей материалов. Предложены алгоритмы решения задач устойчивости и контактных задач.  [c.12]

В последнее десятилетие начали проявляться работы, связанные с построением алгоритмов решения задач устойчивости оболочек вращения в довольно общей постановке, достаточно простых в обращении и позволяющих получить корректное решение широкого класса этих задач с достаточной точностью. В первую очередь это алгоритмы, разработанные Д. Бушнелом [83, 87, 88], В. И. Мяченкавым [50, 53], Ю. В. Липовцевым [45, 46], В. В. Кабановым [31] и основанные на методе конечных разностей. Более общие алгоритмы, разработанные авторами и основанные на методе ортогональной прогонки, приведены в III части.  [c.7]


Мальгин ВД. Алгоритмы решения задач прочности, устойчивости и колебаний оболочек вращения, основанные на уравнениях типа С.П. Тимошенко //. Методы решения задач упругости и пластичности. Горький Изд-во Горьк.ун-та, 1973. Вып. 7. С.137 - 142.  [c.163]

Особенности виброударных систем предопределяют метод нахождения стационарных режимов и исследования их устойчивости таким является метод припасовывания или его геометризированная и упорядоченная редакция — метод точечных отображений ). На основе этих методов оказалось возможным разработать эффективные алгоритмы решения задач динамики виброударных систем с применением цифровых вычислительных машин.  [c.101]

Дефекты алгоритма решения задачи на ЦВМ приводят к значительно более тяжелым последствиям, так как они выявляются значительно позже и поэтому обнаруживаются с затратой большего труда ишрекени. Таким образом, при выборе алгоритма численного решения задачи на ЦВМ следует обращать особое внимание на быстроту сходимости решения, его устойчивость и корректность самой задачи.  [c.252]

Аналитического решения задачи о взаимодействии плоской гармонической волны растяжения — сжатия с трещиной конечной длины, даже без учета контактного взаимодействия не существует. Известные решения получены численно [108, 295, 471, 515, 551 и др.]. Причем, как отмечено в [515], с увеличением значения приведеного волнового числа ki = (ul/ i точность решения ухудшается. Для решения этой задачи с учетом контактного взаимодействия это обстоятельство особенно важно, так как даже при небольшой частоте внешнего воздействия приходится вычислять члены ряда Фурье, соответствующие большим значениям волновых чисел. Поэтому необходимо в первую очередь создать алгоритм решения задачи, который был бы устойчивым и эффективным при различных значениях  [c.168]

Об устойчивости численного алгоритма решения задачи для бесконечной волноводной АР можно судить по характеру сходимости приближенных решений для одного из интегральных параметров решетки (например, коэффициента отражения), полученных при различной аппроксимации поля в раскрыве излучателя. На рис. 5.8 приведены зависимости расчетных значений коэффициента отражения от числа учитываемых волноводных Мв и пространственных М р гармоник антенной решетки без диэлектриков со следующими параметрами излучающей структуры ао=0,575Я,, >о=0,25Я,, di=dx—0fi25K, d2—dy— =0,ЗХ. Расчеты проводились для четырех положений луча в пространстве, соответствующих излучению по нормали к решетке, отклонению в плоскости Е и плоскости Я, а также направлению с большим значением коэффициента отражения (0=45,3°, ф=25,6°).  [c.157]

Решение задач оптимального параметрического синтеза машинных агрегатов по критериям динамической нагруженности элементов силовой цепи и устойчивости системы автоматического регулирования скорости двигателя, а также задачи частотной отстройки и других на основе изложенных в 15 подходов связано с необходимостью выполнения многовариаптных расчетов собственных спектров оптимизируемых моделей. В таких задачах решение проблемы собственных спектров параметрически варьируемых моделей представляет собой основную по вычислительной трудоемкости процедуру, особенно для расчетных моделей большой размерности. Эффективный систематический алгоритм решения указанной проблемы параметрического синтеза можно построить на основе эквивалентных структурных преобразований сложных динамических моделей (см. гл. III).  [c.259]

На рис. 1 показано дерево, отображающее структуру процесса распознавания необходимости разреза на техническом чертеже. Исходными являются виды технического чертежа некоторого предмета, результатом — суждение о необходимости либо ненужности разреза. Рассматривая дерево рис. 1, отметим, что при переходе от уровня к уровню наблюдается быстрый рост количества частей процесса, которые представляют собой легкоформали-зуемые агрегаты (напомним, что алгоритмы восстановления пространственного образа и определения видимости линий чертежа известны, например [59] и т. д.). Это же дерево демонстрирует большую сложность задач, связанных с инженерной графикой и начертательной геометрией. В ряде случаев процесс структуризации удается выполнить на уровне интроспекции. Процесс моделирования может быть закончен либо продолжен на другом уровне с целью оценки оптимальности решения, его устойчивости и т. п.  [c.6]

В настоящей монографии приведены результаты численного и экспериментального исследования термоползучести гибких пологих замкнутых, открытых и подкрепленных в вершине оболочек вращения переменной толщины, выполненных из изотропных и анизотропных материалов, обладающих неограниченной ползучестью. В главе I дан краткий анализ подходов к решению задач изгиба и устойчивости тонких оболочек в условиях ползучести. Глава II посвящена построению вариационных уравнений технической теории термоползучести и устойчивости гибких оболочек и соответствующих вариационной задаче систем дифференциальных уравнений, главных и естественных краевых условий, разработке методики решения поставленной задачи. Вариационные уравнения упрощены для случая замкнутых, открытых и подкрепленных в вершине осесимметрично нагруженных пологих оболочек вращения, показаны некоторые особенности алгоритма численного решения. Результаты решений осесимметричных задач неустаповившейся ползучести и устойчивости замкнутых, открытых и подкрепленных в вершине сферических и конических оболочек постоянной и переменной толщины приведены в главе III. Рассмотрено также влияние на напряженно-деформированное состояние и устойчивость оболочек при ползучести высоты над плоскостью, условий закрепления краев (при постоянном уровне нагрузки), уровня и вида нагрузки, дополнительного малого нагрева, подкрепления внутреннего контура кольцевым элементом. Глава IV посвящена численному исследованию возможности неосесимметричной потери устойчивости замкнутых в вершине изотропных и анизотропных сферических оболочек в условиях ползучести. Проведено сопоставление теоретических и экспериментальных дан-лых.  [c.4]

Применение критерия интенсивного осесимметричного выпучивания (потери устойчивости в большом ) при решении задач ползучести оболочек обусловило в алгоритме необходимость дробления шага по времени (который прогнозируется по методике, изложенной выше) при увеличении скорости изменения прогиба в характерной точке. Численно потеря устойчивости фиксируется по перемене знака приращения прогиба в характерной точке оболочки (А < 0) на некотором шаге по времени, что соответствует перемене знака определителя системы Ритца (П.31).  [c.51]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


В данной книге нашли отражение вопросы теории и практического применения аналитического варианта МГЭ применительно к одномерным плоским и пространственным расчетным схемам линейных систем стержней и пластин. Для расчета подобных систем предложен вариант МГЭ, основанный на новой схеме преобразования интегральных соотношений метода начальных параметров в систему линейных алгебраических уравнений. Отличительной особенностью метода является единообразный подход к алгоритму задач статики, дднамики и устойчивости, что создает широкие возможности для машинной реализации алгоритма. Показано, что решения этих трех типов задач отличаются только лишь фундаментальными функциями, а матричная форма разрешаюш,их уравнений позволяет совместить разные задачи. Несмотря на уклон в задачи строительной механики и теории тонких пластин, разработанный аналитический вариант МГЭ с небольшими изменениями может быть приспособлен для решения задач электротехники, теплотехники, физики, гидрогазодинамики, аэроупругости и других наук, где соответствуюш,ие процессы можно описать дифференциальными уравнениями.  [c.8]


Смотреть страницы где упоминается термин Алгоритм решения задач устойчивости : [c.92]    [c.138]    [c.408]    [c.457]    [c.236]    [c.138]    [c.2]    [c.9]   
Смотреть главы в:

Контактные задачи нелинейной теории оболочек вращения  -> Алгоритм решения задач устойчивости



ПОИСК



Алгоритм

Алгоритм решения

Методические основы алгоритмов решения задач прочности, устойчивости и колебаний

Устойчивое решение

Устойчивость решений



© 2025 Mash-xxl.info Реклама на сайте