Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформирование конечное однородное

Деформирование конечное однородное 95  [c.853]

Представим конструкцию, состоящую из конечного числа (п) элементов, в каждом из которых напряженно-деформированное состояние однородно (такая модель, в частности, используется иногда в методе конечных элементов). Предполагается, что в г-том элементе i = 1, 2, п) напряженное состояние характеризуется тензором напряжений с координатами aip = ( 3 — компо-  [c.156]


При переходе от элемента объема к неоднородно деформированной детали изучение прочности сильно усложняется. К влиянию объемности, которое проявляется и для элемента и для тела, здесь добавляется также влияние неравномерности, отсутствовавшее у элемента и у однородно-деформированного конечного тела.  [c.260]

В механике и физике часто встречаются случаи, когда три составляющих вектора в пространстве являются линейными однородными функциями трех составляющих радиуса-вектора. Настоящая глава посвящена изучению подобных случаев, примерами которых могут служить напряженное состояние (т. е. поле напряжений), поле конечных однородных деформаций, поле скоростей деформации в окрестности точки деформированного материала. Все эти случаи допускают, таким образом, рассмотрение с единой точки зрения, на основе выявления той общей формы которая присуща всем зависимостям, связывающим между собой механические переменные того или иного поля в отдельности. Эта задача выявления такой общей формы зависимостей была с успехом разрешена около 1881 г. Д. Гиббсом в его труде Векторный анализ . Им было показано, что приведенным выше и другим близким к ним физическим понятиям можно дать общее геометрическое представление они являются примерам  [c.172]

А. Простые случаи конечного однородного деформирования. Сначала мы рассмотрим некоторые случаи конечного однородного деформирования материала, упрочняющегося при деформировании, когда главные направления напряжения и деформации совпадают и не поворачиваются относительно друг друга и по отношению к телу. Предположим, что определены экспериментально или иным путем две монотонно возрастающие функции, описывающие зависимость среднего напряжения а = 7з (01 + 02 + + 0з) от средней деформации удлинения е=7з (61 + 82 + 83) и зависимость октаэдрического касательного напряжения  [c.95]

К. Теорема минимума механической работы для конечной однородной пластической деформации. Касательное напряжение то и натуральная деформация сдвига yo на октаэдрических площадках, как упоминалось в предыдущих параграфах, использовались при определении интенсивности однородного напрял<енного состояния на пределе текучести и величин конечных остаточных деформаций в податливых материалах помимо связанных с этим преимуществ, величины то и yo являются также важными переменными, от которых зависит механическая работа деформации, производимая напряжениями в несжимаемой пластичной среде. Мы видели, что последовательности нагружений и деформирований можно в этих пространствах представить геометрически посредством изображения движений соответственно двух точек точки Pq, прямоугольные координаты которой равны приведенным главным напряжениям — а, сГз = Qg — а, ст = 03 — ст,  [c.118]


Деформации ускоряемых тел часто называют динамическими деформациями, чтобы подчеркнуть их отличие от статических деформаций, возникновение которых не сопряжено с ускорениями деформированных тел. Различать динамические и статические деформации следует потому, что характер распределения этих двух типов деформаций в одном и том же теле обычно бывает различным. Это видно из того, что динамические деформации обычно бывают неоднородны, в то время как статические деформации во многих случаях оказываются однородными. Конечно, происхождение статических н динамических деформаций одно и то же. Как те, так и другие являются результатом того, что разные части тел в течение некоторого времени двигались по-разному. Но если взаимодействуют более чем два тела, то может случиться, что силы, возникшие в результате деформаций, в конце концов уравновесятся и ускорения тел прекратятся вместе с тем прекратятся дальнейшие изменения деформаций. Эти неизменные деформации тела, покоящегося или движущегося без ускорений, и называют статическими деформациями.  [c.170]

Как следует из (5), в обычном треугольном конечном элементе распределение деформаций и напряжений однородно. Очевидно, это ведет подчас к серьезным погрешностям, в частности вблизи особенностей, как мы уже видели на примере, и в этих местах сетку конечных элементов приходится сгущать. Было бы желательно иметь возможность задаваться более сложным деформированным состоянием в пределах одного элемента и тем самым повышать порядок аппроксимации. Для этого существуют несколько способов, некоторые из которых мы сейчас рассмотрим.  [c.561]

Рассмотрим прямоугольный параллелепипед конечных размеров. Пусть на четыре его грани действует касательная равномерно распределенная нагрузка с интенсивностью т (рис. 11.2, а). Напряженно-деформированное состояние параллелепипеда однородное.  [c.12]

Анализ возможностей, связанных с использованием структурной модели среды для описания процессов деформирования материалов, начнем с наиболее простого случая — пропорционального нагружения, реализуемого, в частности, при растяжении-сжатии бруса. При таком виде нагружения структурная модель, схематично отражающая микронеоднородность реальных материалов, имеет достаточно простую механическую интерпретацию. Рассмотрим образец материала, подвергающийся испытаниям на растяжение-сжатие и находящийся (имеется в виду его рабочая часть) в макроскопически однородном напряженно-деформированном состоянии. Предполагая существование микронеоднородности по поперечному сечению, представим образец в виде системы стержней, деформирующихся одинаково (рис. 1.1). Примем, что стержни обладают свойствами идеального упругопластического материала, а неоднородность характеризуется лишь различием значений их пределов текучести. Модули упругости стержней будем полагать равными, это упростит анализ, не влияя на его конечные результаты.  [c.11]

Для поликристаллических материалов сферическая форма является статистически средней по различным формам зерен и ее целесообразно принять в качестве первого приближения. Радиус сферы можно не конкретизировать, хотя для заполнения определенного объема поликристалла радиус сферических зерен должен меняться от некоторого конечного до исчезающе малого значения. Каждое зерно считаем однородным монокристаллом, обладающим в общем случае анизотропией теплопроводности, температурной деформации и упругих характеристик (см. 2.2). При хаотической ориентации анизотропные зерна образуют поликристалл с изотропными свойствами. Поэтому в первом приближении вместо взаимодействия анизотропных зерен между собой будем рассматривать взаимодействие отдельно взятого однородного анизотропного сферического включения с изотропной окружающей средой. Влияние такого включения на температурное и напряженно-деформированное состояния среды быстро уменьшается с увеличением расстояния от включения. Поэтому при малых размерах зерен объем окружающей среды в таком случае можно считать неограниченным.  [c.70]


Деформированная сетка конечных элементов для относительного обжатия 40 % представлена на рис. 4.5. Из рисунка следует, что сечения, перпендикулярные оси г, в процессе обжатия не остаются плоскими, а напряженно-деформированное состояние не является однородным.  [c.97]

Рассмотрим теперь решение задачи, поставленной в 28, без использования допущения об однородности напряженного и деформированного состояний по высоте цилиндра и гипотезы плоских сечений, т. е. рассматривая задачу как двумерную [72, 111]. Для решения ее применим метод конечных элементов в форме метода перемещений. Так же, как и в 27, примем условие прилипания , т. е. предположим, что в точках этой поверхности скорость радиального перемещения равна нулю (скорость окружного перемещения равна нулю по условию осевой симметрии задачи). Тогда кинематические граничные условия при расположении начала координат на оси цилиндра на половине высоты его при г = О = О, при z = h Vz — —v 2, = 0.  [c.112]

Монография написана, на наш взгляд, методически чрезвычайно удачно, вполне строго и вместе с тем достаточно просто. На основе традиционных концепций однородного напряженно деформированного состояния выясняются наиболее существенные особенности механического поведения вязких, упругих и высокоэластичных сред и предлагается оригинальный, сравнительно несложный метод формулирования соответствующих уравнений реологического состояния. Автор обходится элементарным математическим аппаратом векторного исчисления и системами лагранжевых координат с подвижным локальным векторным базисом (так называемые конвективные системы координат). Тем самым он облегчает неподготовленному читателю усвоение материала, добиваясь в первую очередь физической ясности изложения. Математически строгая постановка и анализ исследуемых задач в случае неоднородных напряжений и деформаций даются лишь в главе 12, где с помощью тензоров кратко излагается теория конечных деформаций в вязко-эластичных средах. Правда, здесь изложение слишком уж конспективно, и многочисленные доказательства , как правило, сводятся к перечню  [c.7]

Заметим, что свойство (2.6) оправдывает использование термина однородный для описания рассматривавшегося до сих пор типа деформации. Обычно этот термин применяется к случаю растяжения весьма тонкой упругой полосы (ленты). Ее удлинение называется однородным, если отношение начальной и конечной длин будет одним и тем же для всех элементов, составляющих полосу. Из свойства (2.6) как раз следует то, что при однородном деформировании каждая материальная линия в трехмерном теле подвергается растяжению (или сокращению), однородному в вышеприведенном смысле.  [c.37]

Выполнение условия Адамара для линейно упругих тел свидетельствует также о наличии вещественных значений скоростей распространения волн сдвига и сжатия-растяжения в данной среде [163], следовательно, постановка динамических задач при деформировании на стадии разупрочнения в противном случае некорректна и лишена физического смысла. Если учесть, что любой реальный процесс осуществляется с некоторой, пусть малой, но конечной скоростью, не затрагивать структуры материала и условий проведения опытов, то в силу указанного противоречия модель однородной разупрочняющейся среды, строго говоря, не является допустимой.  [c.196]

При решении задачи статики многослойных панелей общего вида методом конечных элементов (МКЭ) на основе вариационных формулировок смешанного типа (4.41), (4.42) требования к выбору функций формы остаются такими же, как и в методе перемещений. В качестве функций формы конечного элемента наиболее часто используются алгебраические полиномы, порядок которых должен обеспечивать требуемую гладкость функций и их производных. В МКЭ важным требованием к функциям формы является требование воспроизводить в элементе однородное напряженно-деформированное состояние и, в частности, описывать смещение элемента как жесткого целого. Наиболее распространенный способ удовлетворения указанным требованиям состоит в повышении порядка аппроксимирующих полиномов. При этом используются полиномы более высокого порядка, чем это требуется, исходя из структуры вариационных уравнений, что приводит к увеличению обобщенных степеней свободы конечного элемента. Применение смешанных вариационных формулировок позволяет с помощью независимой аппроксимации деформаций и перемещений улучшить свойства конечных элементов.  [c.190]

Механические свойства материалов обычно изучают на специально изготовленных образцах. При испытании с помощью нагружающих устройств в рабочей части образца создается однородное (не изменяющееся по объему) напряженно-деформированное состояние (НДС) требуемого вида. Напряжения в таком образце определяются одними лишь условиями равновесия, а деформации могут быть измерены на конечной базе. Благодаря этому достаточно просто устанавливаются основные механические характеристики материала, определяющие его деформируемость и условия разрушения. Следует, однако, иметь в виду, что при начинающемся разрушении (или потере устойчивости процесса равномерного деформирования) однородность НДС образца нарушается и характеристики, определяемые таким путем, должны рассматриваться лишь как условные.  [c.14]

Следуя А. А. Ильюшину, будем называть М-образцом по отношению к объему тела в окрестности материальной частицы М любое тело определенной формы и конечных размеров, вещество которого и его состояние в начальный момент времени одинаковы с веществом и его состоянием в объеме А IF в момент / = 0. При этом напряженное и деформированное состояние образца, а также температурное поле являются однородными по объему в любой момент времени может быть реализован Любой процесс изменения температуры, в (О, деформаций е,А (О [напряжений Oik(t)]. Совокупность испытаний М-образцов назовем М-опытами.  [c.130]


Рассмотрим упругое тело с параллельными оси Охз цилиндрическими полостями произвольной формы, загруженное вдоль этой оси. Применим линеаризованную теорию, когда начальное состояние описывается теорией конечных деформаций. Величины начального состояния обозначим индексом нуль . Для рассматриваемого вида загружения получим однородное начальное напряженно-деформированное состояние  [c.12]

В дальнейшем подробно рассматривается дискретно-вариационный метод [30, 85, 88, 93], на основе которого будут построены энергетически согласованные (полностью консервативные) дискретные модели балок, оболочек, однородных, многослойных и композиционных сред и промоделированы численно нелинейные динамические процессы деформирования и разрушения. Предлагаемый дискретно-вариационный метод можно рассматривать как специальное сочетание и обобщение конечно-элементарных и вариационно-разностных представлений, при которых дискретная модель строится непосредственно, а не как аппроксимация заданной континуальной модели.  [c.85]

При расчете толстостенных конструкций в виде многослойных или однородных оболочек необходимо учитывать кроме сопротивления сил в касательной плоскости к срединной поверхности оболочки и сдвиговых напряжений еще и работу сил растяжения — сжатия в нормальном направлении к срединной поверхности. Это приводит к необходимости построения дискретных элементов с учетом трехмерного напряженно-деформированного состояния. При расчете оболочек па основе МКЭ также используются различные трехмерные конечные элементы [18, 63], для определения их жесткостных параметров, как правило, необходимо выполнение численного интегрирования изменяющихся величин напряжений на элементе. В ДВМ главным является определение мощности внутренних сил на дискретном элементе как функции узловых координат и их скоростей, поэтому для вычисления мощности по формулам (4.2.4) удобно использовать средние аппроксимационные значения скоростей деформаций и напряжений на элементе.  [c.101]

Ряд решений, соответствующих однородному деформированному состоянию, получил Био [24—27]. Он основывался на введенных им уравнениях, относящихся к малым деформациям, наложенным на конечные деформации. Уравнения Био — частный случай представленных здесь уравнений. Список последующих работ Био, относящихся к устойчивости, дан в работе [23].  [c.110]

Так как деформация редко бывает однородной, аналитические решения виртуально невозможны. При анализе напряжений элементы машины или конструкции разбиваются на конечное число элементов, и история деформирования каждого из них учитывается надлежащим образом. Этот метод требует значительного машинного времени, однако он прямо ведет к цели. Примеры применения этого метода даны в работах [265, 159,4,125].  [c.136]

Считается, что в достаточно малой окрестности любой точки деформированного тела состояние является однородным при этом процессы изменения во времени однородной деформации окрестности точки неоднородно деформируемого тела и однородной деформации образца конечных размеров при одинаковых напряжениях и внешних условиях протекают одинаково.  [c.175]

Деформационная теория термопластичности. Среди разнообразных задач механики деформируемого твердого тела, связанных с определением напряженно-деформированного состояния элементов конструкций из упругопластических материалов, встречаются такие задачи, общим условием в которых является изменение в процессе нагружения всех компонентов девиатора напряжений в окрестности каждой точки среды в одном и том же отношении. В этом случае нагружение называют пропорциональным и при анализе упругопластических напряжений и деформации можно уже исследовать не процессы, а конечные состояния, когда между собой связаны компоненты тензоров напряжений и деформации и температура, т.е воспользоваться соотношениями деформационной теории термопластичности. Для однородной изотропной среды уравнения этой теории, в принципе, можно получить как частный случай теории пластического течения для изотропно упрочняющихся материалов с условием текучести Мизеса.  [c.156]

Часть материалов настоящего тома была впервые опубликована в монографии, изданной на немецком языке в 1927 г., на английском—в 1931 г. и в русском переводе американского издания— в 1936 г., а ее сжатое изложение в 1928 г. было помещено в одном из разделов шестого тома Handbu h der Physik. Цель настоящей книги—дать современное изложение механики пластических деформаций твердых тел. Несколько новых глав вводят в теорию простых и обобщенных типов вещества, представление о которых основано на типах деформаций—упругой, пластической и их сочетании, а также на типах принятых законов деформирования. Целиком пересмотрены главы, относящиеся к исследованию напряженных состояний в пластически деформированных цилиндрах и дисках и к математической теории неоднородного состояния плоской пластической деформации и поверхностей скольжения. В гл. XII и XIII добавлены анализ конечных однородных деформаций, основанный на введении квадратичного удлинения X, и теория конечной плоской деформации, где использованы зависимости, выраженные через составляющие натуральных деформаций. Синтез малых упругих и пластических деформаций обобщен в теории стесненной пластической деформации, с которой приходится иметь дело в случаях, когда главные оси напряжений меняют свое направление в материале.  [c.5]

Кинематические ограничения, наложенные на перемещения точек модели, качественно характеризуют степень стеснения при совместном деформировании структурных элементов. Отметим, что наложение этих ограничений не единственно. Если предположить однородность поля перемещений по нормали к граням каждого структурного элемента в любом сечении куба (см. рис. 5.2), то для растяжения-сжатия модели получим завышенные характеристики жесткости. При этом расчет усложнится на порядок вместо 27 уравнений получим 81. Аналогичная модель трехмерноармированного материала была рассмотрена в работе [121]. Расчет констант для нее проводили методами теории упругости с наложением упомянутых выше кинематических условий на гранях каждого элемента. Решение граничной задачи методом конечного элемента  [c.138]

Согласно гипотезе макрофизической определимости А.А. Ильюшина [204], каждой точке среды может быть поставлен в соотвепо ствие макрообразец в виде тела конечных размеров, находящийся в однородном напряженно-деформированном состоянии и иа котором могут быть в принципе изучены все процессы, протекающие в изображаемой точке среды.  [c.22]

Макроскопические процессы деформирования композитов также опишем в рамках представлений однородной сплошной среды, выделив из композиционного тела элементарный макрообъем dV. Размеры элементарного макрообъема, как было отмечено, находятся в отнесении того же порядка к размерам тела, что и размеры элементарного микрообъема к характерному размеру элемента структуры. Объем dV должен содержать достаточно большое число элементов структуры, чтобы быть представительным и обладать эффективными свойствами. Справедливость постулата макрофизической определимости на макроуровне означает, что существуют образцы конечных размеров из композита, которые могут считаться квазиодиородными и на которых можно экспериментально установить связь между процессами изменения средних напряжений и деформаций.  [c.121]


В качестве модели представительного объема зернистого компо- зита, заполняющего область й виде куба, рассмотрим совокупное изотропных упруго-хрупких элементов структуры, каждый из которых ассоциирован с тетраэдральным конечным элементом. Будем считать, что структурные элементы рассматриваемого композициов- ного материала однородны и прочно соединены по границе раздела. Геометрия и взаимное расположение элементов заданы и не из меня-, ются в процессе деформирования и разрушения феды, которая обладает свойством макроскопической однородности.  [c.128]

В методе однородных решений более полно используется информация о волновых движениях в нормальных модах. В рамках этого метода общее решение задачи (1.1) при нулевых значениях функций g (xi) и (xi) строится в виде бесконечной суммы волн в слое Zi /гс вещественными, мнимыми и комплексными постоянными распространения. При этом, естественно, принимаются во внимание волны, распространяющиеся в обоих направлениях. Нераспростра-няющиеся волны выбираются так, чтобы соответствующие характеристики напряженно-деформированного состояния убывали от поверхностей Xi= а В таком решении содержится бесконечный набор произвольных комплексных коэффициентов, подбором которых можно выполнить граничные условия на поверхностях = = а. Предположение о равенстве нулю функций g (xi) и % (xi), конечно, не является существенным ограничением.  [c.159]

Второе требование основывается на следующих соображениях. При уменьшении размеров конечных элементов изменения деформаций в пределах каждого из них будут все менее существенными по сравнению с самими деформациями, т. е. деформированное состояние будет приближаться к однородному. Для сходимости решения необходимо, чтобы аппррксими-  [c.213]

Еще одно явление, наблюдавшееся Баушингером при исследовании нелинейности, было недавно заново открыто Уильямом Френсисом Хартманом (Hartman [1967, 1], [1969, 1]) в экспериментах по динамической пластичности, а именно наличие неожиданно большого относительного изменения объема в процессе пластического деформирования однородных тел, сопровождавшегося малым остаточным относительным изменением объема, обнаруженным после того, как нагрузка была снята. В течение последних 90 лет это открытие Баушингера игнорировалось и теоретиками, и экспериментаторами в их попытках развития теории как квазистатической, так и динамической пластичности. Как видно из рис. 2.36, Баушингер нашел, что при определенных уровнях деформации могут иметь место внезапные приращения в значении относительного изменения объема и они могут быть сравнительно велики при сопоставлении с полным значением относительного изменения объема. Конечно, значения осевых пластических деформаций были на порядок выше измеренного значения относительного изменения объема. Сравнение этих полных осевых деформаций с интересующим нас объемным расширением будет сделано ниже, в IV гл., посвященной конечным деформациям. Наличие расширения при пластическом деформировании считается важным для современной теории пластичности. (См. раздел 4.35.)  [c.129]

Описанные в 2, 3, 4 опыты касались лишь двух характерных точек диаграммы растяжения — сжатия предела текучести (упругости) и предела прочности (временного сопротивления). Что касается всей диаграммы растяжения при различных скоростях деформации, то построение ее встречает серьезные экспериментальные трудности, когда скорость деформации становится большой. Это — трудности двух типов. Во-первых, при повышении скорости деформации, связанном с приложением нагрузок ударного типа, колебания измерительных приборов становятся столь значительными, что вносимые этими колебаниями погрешности превышают измеряемые величины. Казалось бы, эти трудности можно преодолеть путем применения для измерения, например, деформаций проволочных датчиков сопротивления, которые представляют собой тонкие проволочки, наклеиваемые на образец и изменяюш,ие свое электрическое сопротивление при деформации вместе с деформированием образца. Эти датчики практически безынерционны. Но здесь неизбежно выступают трудности второго рода. Дело в том, что, как увидим далее, механические возмуш,ения в любой реальной среде распространяются с конечной скоростью, в виде волн. При малой скорости нагружения эти волны в течение опыта много раз пробегают туда и обратно вдоль образца, так что напряженное и деформированное состояния в целом однородны. При большой же скорости нагружения деформированное и напряженное состояния сильно неоднородны по длине образца. Это означает, во-первых, что, например, деформация, вычисляемая как отношение абсолютного удлинения к длине образца, не отражает деформированного состояния образца даже в среднем, а скорость деформации, вычисляемая как частное от деления скорости изменения расстояния между концами образца на длину его, не является даже в среднем истинной скоростью деформации, которая, как и деформация, переменна по длине образца и во времени. При этом, чем длиннее образец, тем эти неоднородности существеннее. Во-вто-рых, пробегание туда и обратно волн по образцу передает через датчик на измерительный прибор переменные показания, частота которых соизмерима или превышает собственную частоту колебательных контуров  [c.255]

На основе приведенных конечно-разностных соотношений и алгоритма peiaflHsanHH явной однородной схемы расчета разработана программа на языке ФОРТРАН с выводом графической информации- с помощью сервисных подпрограмм ГРАФОРа [86]. Расчеты дияамич еского деформирования круговых пластин, защемленных по внешнему контуру при центральном и кольцевом распределе-лении заданного начального импульса скоростей и соударений с жесткой преградой, дают сходные результаты, рассмотренные в предыдущем параграфе. В то же время осесимметричное деформирование имеет свои особенности. На рис. 8, а представлены результаты расчета изменения формы меридиана круглой пластины радиусом 0,5, толщиной 0,01 м из алюминиевого сплава, нагруженной локализованным импульсом начальной скорости  [c.75]

При решении конкретных задач при конечных деформациях считается, что эластомер однородный изотропный материал. Это связано в основном с имеюш,имся у исследователя для решения задачи математическим (программным) обеспечением. По реальные эластомеры это сложные микрокомпозиты ). Основой эластомера являются хаотически переплетенные цепи (макромолекулы), сшитые (после процесса вулканизации) в трехмерные сетки. Причем макромолекулы имеют различные длины и жесткости. В процессе деформирования макромолекулы образуют надмолекулярные и надсегментные ) образования, которые могут самопроизвольно неожиданно разрушаться в процессе деформирования, могут образовываться зоны кристаллизации. То есть структура эластомера и слабо регулярна, и изменяется в процессе деформирования. П хотя исследование структуры материала не является задачей механики деформируемого твердого тела, но, используя подробный материаловедческий анализ [15, 17, 18, 65], можно делать некоторые предположения о приближенных моделях для описания деформирования и разрушения эластомеров в рамках механики деформируемого твердого тела.  [c.325]

Идея испытания на расслоение у кромки зародилась у Пэйгано и Пайпса [38], которые предложили для определения межслойной прочности применять многонаправленный слоистый композит, нагружаемый растяжением. Последовательность укладки слоев выбиралась так, чтобы основной причиной расслоения у свободной кромки было межслойное растяжение. В работе [37] 3ja методика была распространена на исследование начала и развития расслоения в графито-эпоксидных слоистых композитах ( 302/90°/90°, подвергнутых одноосному растяжению. Для расчета скорости высвобождения энергии деформирования было использовано уравнение (73). В обеих работах образцы не имели инициирующих трещин. Поэтому рост трещин от кромок не был ни однородным, ни симметричным. Кромочная трещина не оставалась в срединной плоскости, а переходила с нее на поверхность раздела 90°/-30° и обратно, что приводило скорее к смешанному типу раэрушения, чем к чистому расслоению типа I. В работе [37] для разделения вкладов механизмов типов I и II был применен метод конечных элементов.  [c.241]

Программа VOLNA предназначена для расчета динамического напряженно-деформированного состояния упругих трехмерных конечных и бесконечных однородных изотропных тел при заданных граничных нестационарных нагрузках и нулевых начальных условиях.  [c.254]

В практике получили большое распространение деформируемые конструкции с физико-механическими особенностями в виде разрывов однородности. Примером таких конструкций могут служить пластинки и оболочки с вырезами произвольной формы. Исследованию их напряженно-деформированного состояния посвящено значительное число работ, опубликованных прежде всего известными советскими учеными Г. Н. Савиным, А. Н. Гузем и их учениками, Э. И. Григолюком и Л. А. Фильштинским. Приводимые в этих работах решения чаще всего основывались на использовании комплексных потенциалов Колосова—Мусхелишвили, комплексных переменных, а в последнее время — на численных методах типа метода конечных разностей и метода конечных элементов. Значительно меньшее число работ было опубликовано по решениям задач об устойчивости и колебаниям пластинок и оболочек с вырезами или устойчивости и колебаниям многосвязных систем. Изложению некоторых из них посвящена книга редактора перевода Устойчивость и колебания пластинок и оболочек с отверстиями . — М. Машиностроение, 1981, 191 с. Ограниченное число публикаций связано с целым рядом математических трудностей, которые не всегда удается преодолеть даже численными методами.  [c.5]


Метод локального приближения [33] сводит задачу расчета статистических характеристик в элементах структуры композита к решению методом конечных элементов совокупности краевых задач для области Ь, содер-жаш,ей различные реализации фрагмента из девяти ячеек квазипериодичности случайной структуры композита (рис. 2.27) на границе области Ь заданы детерминированные однородные напряжения, соответствуюш,ие макронапряжениям композита сг 2 Статистические характеристики полей деформирования в волокнах и матрице композита получены осреднением соответствующих решений для 25 реализаций фрагмента случайной структуры для полей деформирования в центральной стохастической ячейке на рис. 2.27.  [c.119]


Смотреть страницы где упоминается термин Деформирование конечное однородное : [c.90]    [c.79]    [c.49]    [c.65]    [c.129]    [c.82]    [c.2]    [c.6]    [c.194]   
Пластичность и разрушение твердых тел Том2 (1969) -- [ c.95 ]



ПОИСК



Деформирование конечное

Однородность тел



© 2025 Mash-xxl.info Реклама на сайте