Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение физические состояния (связи)

Во вторую группу входят уравнения, конкретизирующие определенные (только для данного типа жидкостей) свойства. Вид таких уравнений во многом определяется особенностями жидкости, ее физико-химическими свойствами. Это уравнения термодинамического состояния жидкости или газа, связующие между собой такие физические величины, как плотность, давление и температура уравнение реологического состояния — внутренние напряжения и кинематические параметры уравнения теплового потока — распределение температуры и тепловой поток наконец, уравнение, определяющее зависимость внутренней энергии от параметров, являющихся компонентами энергетического уравнения состояния.  [c.4]


В каждой точке движущегося совершенного газа параметры состояния связаны между собой уравнением состояния (1-1). Во многих практически важных случаях связь между параметрами / , р и Г выражается в более сложной форме. При рассмотрении физических свойств реальных газов иногда нельзя пренебрегать собственным объемом молекул и силами взаимодействия между ними. Эти факторы сказываются особенно существенно, если давления газа велики и, следовательно, концентрация молекул в определенном объеме велика.  [c.10]

Таким образом, полученные данные свидетель ствуют о том, что переход полимера из одного физического состояния (с большими периодами релаксации) в другое (со сравнительно малыми периодами релаксации) влечет за собой не только изменение скорости разрушения и разрушающих напряжений, но и изменение механизма разрушения. Так, при хрупком разрыве, когда время разрушения Тр много меньше периода релаксации т, разрушение полимеров определяется разрывом химических связей, и температурно-временная зависимость прочности описывается уравнением Журкова (2.7). В высокоэластическом состоянии с малыми периодами релаксации, когда Тр > т, разрушение полимера на медленной стадии определяется разрывом физических связей, и температурно-временная зависимость прочности при больших удлинениях (вероятно, более 20%) описывается уравнением Бартенева (2.11).  [c.101]

Поэтому, хотя топология, связанная с уравнением (6-3.46), не является, конечно, физически невозможной, материал, описываемый таким уравнением состояния, не будет удовлетворять большинству общих теорем теории простой жидкости, и термодинамический анализ, проведенный в разд. 4-4, не будет для него справедлив. Кроме того, общая теория функционалов, непрерывных по отношению к топологии, подобной той, которая связана с уравнением (6-3.46), не разработана, так что нельзя сделать никаких общих утверждений, справедливых для такого класса материалов.  [c.228]

В настоящее время в литературе есть немало данных по парциальному мольному объему для компонентов в жидкофазных растворах. Однако для непосредственного вычисления фугитивности компонента в жидкофазном растворе нужны не только данные о парциальном мольном объеме компонента в жидкой фазе и данные о парциальном мольном объеме газовой, фазы того же состава при малом давлении, но и данные во всей области от давления, при котором начинается конденсация, до давления, при котором происходит кипение. В этом случае система не может физически осуществляться одной фазой. Следовательно, фуги-тивность компонента в жидкофазном растворе нельзя определить только на основе экспериментальных данных о парциальном мольном объеме. С помощью уравнений состояния для смесей можно установить непрерывное математическое соотношение для двухфазной области и связать все парофазные и жидкофазные состояния. Однако вычисленные величины фугитивности для жидкой фазы весьма чувствительны к математической форме уравнения состояния для двухфазной области и рассчитывать их следует с особым вниманием.  [c.246]


Механическое состояние среды зависит от множества параметров как механической, так и физической природы. Механическими параметрами являются перемещения Uk, деформации tij, напряжения ст,/, их производные, давление р и т. д. Физические параметры —это плотность р, температура Т, доза радиоактивного облучения Q, интенсивность электромагнитного поля и т. п. Эти параметры связаны между собой некоторыми законами, которые называются уравнениями состояния.  [c.78]

Суперпозиция в классической и квантовой физике. Суперпозиция часто встречается в классической физике это хорошо известная суперпозиция классических волн. С математической точки зрения классическая суперпозиция и суперпозиция в квантовой физике аналогичны. Именно это обстоятельство немало способствовало развитию квантовой теории. В то же время оно затрудняло осмысливание физического содержания получаемых в теории результатов, так как порождало соблазн проводить неоправданные аналогии с классическими волнами. Как писал Дирак, допущение суперпозиционных связей между состояниями приводит к математической теории, в которой уравнения движения, определяюш,ие состояния, линейны по отношению к неизвестным. Ввиду этого многие пытались установить аналогии с системами классической механики, такими, как колеблющиеся струны или мембраны, которые подчиняются линейным уравнениям, а следовательно, и принципу суперпозиции. Важно помнить, однако, что суперпозиция в квантовой физике существенным образом отличается от суперпозиции, встречающейся в любой классической теории. Это  [c.108]

Отыскание деформаций и перемещений связано с рассмотрением физических и геометрических уравнений плоской задачи теории упругости, что в свою очередь приводит к необходимости интегрирования дифференциальных уравнений в частных производных, а это лишает решение того однообразия и четкости, которые свойственны определению напряженного состояния в первой основной задаче.  [c.107]

Для описания физических явлений в пьезоэлектрических телах необходимо, прежде всего, иметь уравнения состояния, т. е. зависимости, устанавливающие связь между напряжениями, деформациями и электрическим полем. При адиабатических условиях уравнения состояния для анизотропных тел с учетом пьезоэлектрического эффекта можно получить на основе термодинамических соображений с использованием, например, термодинамического потенциала (электрическая энтальпия), зависящего от деформаций е,/, и электрического поля . Компоненты напряжений ац вектора электрической индукции Д,- определяются из соотношений  [c.236]

Дифференциальные соотношения аналитически обобщают первый и второй законы термодинамики и достаточно широко используются при проведении теоретических и экспериментальных исследованиях свойств реальных газов. На основе имеющегося уравнения состояния реальных газов, дифференциальные уравнения термодинамики позволяют вычислять значения физических величин, входящих в это уравнение состояния. Наряду с этим дифференциальные уравнения позволяют оценить точность и термодинамическую ценность предлагаемых уравнений состояния реальных газов, что, несомненно, имеет большое практическое и прикладное значение. Одновременно практическое значение дифференциальных уравнений состоит и в том, что, устанавливая связь между физическими величинами, они позволяют сократить число получаемых из опыта данных о свойствах тел за счет возможности определения части из них расчетным путем.  [c.55]

Здесь мы будем вводить параметры состояния в определяющие уравнения более или менее формальным образом. Иногда мы будем называть их параметрами упрочнения или параметрами повреждения, но будем воздерживаться от более детальной их интерпретации. Связь с физической идентификацией структурных состояний материала и вводимыми нами параметрами люжно установить, например, следующим образом. Предположим, что над образцом из данного материала проводится некоторая про-  [c.619]


Физическая картина жидкости сложна, в связи с чем до настоящего времени для жидкости нет теоретически обоснованного уравнения состояния. Более того, если для твердого тела и для газа имеются начальные приближения, в качестве которых соответственно выбраны модель идеального кристалла и модель идеального газа, то для жидкости нет даже упрощенной модели, которая могла бы служить таким начальным приближением.  [c.121]

Результаты статистической обработки всех обследованных материалов показали, что коэффициент при параметре т Л имеет знак минус (Я > 0). Проанализируем, имеет ли это какой-то физический смысл. Числитель формулы (4.4) представляет величину, пропорциональную среднему напряжению, которое вызывает только изменение объема без изменения формы [72]. Если рассматривать этот эффект на микроуровне, то можно предположить, что среднее напряжение может влиять на межатомные силы связи и как следствие — на энергию активации процесса разрушения. Когда среднее напряжение больше нуля т] > 0), происходит ослабление межатомных сил связи когда преобладают напряжения сжатия ( <0), возможно увеличение энергии активации процесса разрушения. С увеличением жесткости напряженного состояния (0) растет величина rJ, и при положительном среднем напряжении вероятность хрупких разрушений повышается, в области сжимающих напряжений увеличение жесткости снижает вероятность разрушения. При всестороннем равном сжатии разрушение невозможно — энергия активации процесса разрушения безгранично растет. Таким образом, уравнение типа (4.16) позволяет раскрыть физическую суть параметра т и показывает, что изменение вида напряженного состояния приводит к изменению исходных свойств исследуемого материала, т.е. при каждом виде напряженного состояния исследователь имеет дело с измененным объектом исследования. В таких условиях теряется смысл оценки состоятельности критерия прочности на основании результатов анализа предельной поверхности предполагаемого неизменным материала [89].  [c.155]

В отличие от напряженных состояний, теплопроводности, диффузии, фильтрации и других рассмотренных выше физических явлений, исследуемых с помощью мембранной, электрической, гидродинамической и иных аналогий, явления, происходящие в пограничном газовом слое, в рамках темы настоящей работы представляют меньший интерес. С точки зрения задач, стоящих при изучении прочности материалов, вопросы распределения скоростей потока в пограничном слое не имеют непосредственной связи с вопросами исследования уравнений состояний материалов. Однако применение этой аналогии вооружает исследователей мощным методическим средством, которое используется уже более ста лет. Метод аналогии Рейнольдса не только не утратил своего значения, но, наоборот, получил настолько широкое распространение, что невозможно представить себе самого современного исследования пограничного слоя где бы в той или иной мере не использовались бы результаты, полученные с помощью этого метода.  [c.114]

Два других недостатка классической теории связаны с физическими обстоятельствами — с физической линеаризацией реологического уравнения состояния, т. е. с сохранением в последнем лишь членов, содержащих тензоры в степени не выше первой, и с принятием постоянства реологических коэффициентов (модулей), т. е. независимости их от температуры и от тензоров (на самом деле такая зависимость имеет место).  [c.519]

Уравнение Дарси раскрывает взаимосвязь между физическими свойствами и параметрами рабочей среды и свойствами сальниковой набивки, силовыми факторами, действующими на нее, а также геометрическими размерами. Это уравнение позволяет определять утечку через неподвижный или подвижный сальник в исходном состоянии, т.е. до начала износа набивки, возникающего вследствие перемещения подвижной уплотняемой детали. По этому уравнению и вытекающим из него зависимостям могут быть также найдены оптимальные геометрические размеры сальниковой камеры. Связь между утечкой q (или С) и высотой набивки может быть представлена как = п, (1/А), а между утечкой и площадью поперечного сечения набивки как q =п2р, или в общем случае q =п(Р/ Л).  [c.95]

Обобщение опытных данных по теплоотдаче и критическим нагрузкам при кипении в критериальных системах, вытекающих из анализа уравнений движения, теплопроводности и т. п. связей, вызывает затруднения, что проявляется в виде заметного расслоения опытных точек и отклонения их от расчетных линий в тех или других областях изменения определяющих критериев [Л. I — 6 , 7, 13, 14, 17—19, 23—25, 31, 32]. Это связано, по-видимому, как со сложностью выяснения раздельного влияния некоторых критериев, так, в известной мере, и с произвольным отбором последних различными авторами. В определенной мере эти трудности могут быть преодолены построением полуэмпирической системы обобщения опытных данных, вытекающей из рассмотрения приближенного термодинамического подобия физических свойств рабочих сред. Последнее непосредственно вытекает из правила соответственных состояний, являющегося эмпирическим законом, приближенно верным для сравнительно не очень широкой группы веществ. Это положение для параметров насыщения записывается в виде следующих функциональных связей [Л. 8—И]  [c.18]

Сопоставляя зависимость (74) с зависимостью (66), следует указать, что при внешнем их сходстве эти зависимости существенно различны по своему физическому обоснованию и содержанию. Установление зависимости (66), как уже было отмечено, базируется на ряде физических условий, неприемлемых для тепломеханических процессов, протекающих при переменной массе рабочих тел. Зависимость же (74), выражая вполне достоверную, физически осязаемую закономерность (зависимость меры изменения состояния от меры внешних воздействий), не связана с указанными физическими условиями. Из математических особенностей функции состояния следует, что множитель т] должен являться интегрирующим множителем для правой части уравнения.  [c.62]


Математической моделью технического объекта на макроуровне является система ОДУ с заданными начальными условиями. В основе ММ лежат компонентные уравнения отдельных элементов и топологические уравнения, вид которых определяется связями между элементами. Предпосылкой создания единого математического и программного обеспечения анализа на макроуровне являются аналогии компонентных и топологических уравнений физически однородных подсистем, из которых состоит технический объект. Для получения топологических уравнений используются формальные методы. Основными методами получения ММ объектов на макроуровне являются следующие методы обобщенный, табличный, узловой и переменных состояния. Методы отличаются друг от друга видом и размерностью получаемой системы уравнений, способом дискретизации компонентных уравнений реактивных ветвей, допустимыми типами зависимых ветвей. Для сложных технических объектов размерность ММ становится чрезмерно высокой, и для моделирования приходится переходить на метауровень.  [c.6]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

В дальнейшем сфера влияния термодинамики расширяется, прежде всего в вопросах о физическом состоянии вещества, в развитии учения о термодинамических равновесиях и т. п., однако и в настоящее время определяющим признаком классической термодинамики является система внешних балансов, что приводит к существенным ограничениям аналитические равенства клас сической термодинамики (уравнения связи координат состояния) действительны лишь для обратимых процессов.  [c.3]

Во многих уравнениях, описывающих состояние компонента топлива, содержатся значения физических параметров жидкости и пара, находящихся на линии насьпцения. Экспериментальное определение физических параметров на линии насьпцения связано с большими трудностями, поэтому разработана приближенная методика [29], позволяющая в определенных пределах рассчитывать эти параметры. Методика основана на теории термодинамического подобия и для технических расчетов дает вполне достаточную точность.  [c.148]


Современное состояние вопроса общего математического описания дисперсных систем нельзя признать до-статочло удовлетворительным, несмотря на растущий интерес к этой проблеме. Каж травило, в работах, шо-священных этому вопросу, фактически используется феноменологический подход к исследованию дисперсного потока в целом. Идея условного континуума п03(В0Ляет полностью использовать математический аппарат механики сплошных сред, но несет с собой погрешности физического порядка тем более существенные, чем значительней макроднскретность системы. Системы таких уравнений, полученные рядом авторов как общие, все же не охватывают класс дисперсных потоков во всем диапазоне концентраций (вплоть до плотного движущегося слоя). Они не учитывают качественного изменения структуры потока и в связи с этим изменения закономерностей распределения частиц, появления новых сил (например, сухого трения), изменения с ростом концентрации (до предельно большой величины) условий однозначности и пр. В основном большинство работ посвящено турбулентному течению без ограничений по концентрациям, хотя при определенных значениях р наступает переход к флюидному транспорту, а затем — плотному слою. Сама теория турбулентности применительно к дисперсным потокам находится по существу в стадии становления (гл. 3). Наиболее перспективные методы — статистические (вероятностные) применяются мало, по-видимому, в силу недостаточной изученности временной и пространственной структур дисперсных систем Общим недостатком предложенных систем уравнений является их незамкнутость, которая объясняется отсутствием конкретных данных о тензорах напряжений и  [c.32]

Если, однако, речь идет о физическом смысле слагаемых p-idni в уравнении (7.3) для открытых систем, то, хотя их иногда называют химической работой или работой переноса массы, они не являются работой. Действительно, о отличие от процесса, рассмотренного выше в связи с определением химического потенциала, при обмене системы и внешней среды веществами перенос массы осуществляется между заданными состояниями системы и окружения, ни одно из которых не обязано, более того, не может быть стандартным, так как обратимость процесса требует лишь бесконечно малого различия Л( в 62  [c.62]

Уравнения, полученные в главах II и III, недостаточны для огг-ределения напряженного и деформированного состояний, возникающих в теле под действием приложенных сил. Поэтому эти уравнения должны быть дополнены определенными соотношениями, связывающими напряженное и деформированное состояния. Эти зависимости определяются исходя из физических свойств твердого тела, подвергающегося деформации. Установление связи между напряженным и деформированным состояниями является одной из важных задач механики сплошной среды, требующей постановки предварительных экспериментов. Это связь обычно идеализируется простейшими математическими формулами.  [c.60]

Дифференциальные уравнения конвективного тепло- и массообмена являются преобразованными выражениями балансовых уравнений сохранения энергии, вещества и количества движения на основе законов, устанавливающих связь между тепловым потоком и градиентом температуры, между силой трения и градиентом скорости, между потоком массы и градиентом концентрации. Движущаяся среда рассматривается как сплошная среда. Физические свойства среды (цж, Яж, рж, ,ж) в общем случае считаются известными функциями параметров ее состояния или известными и неизменными. Среда считается несл<имаемой. 276  [c.276]

Нам остается рассмотреть вопрос о связи между состоянием и измеряемыми на опыте физическими величинами. В классической физике этот вопрос не возникает, ибо в ней состояние частицы описывается заданием физических величин — координат и импульсов. В квантоЕой механике это не так. Волновая функция Ч (г) полностью описывает состояние, но не является непосредственно измеряемой физической величиной. Поэтому, решив уравнение Шредингера, мы хотя и найдем, как изменяется во времени состояние частицы, но не сумеем получить доступных опытной проверке соотношений, если не будем знать рецепта вычисления физических величин в данном состоянии.  [c.23]

Различие между этими разделами механики состоит, во-первых, в рассматриваемых объектах (так, например, в курсе сопротивления материалов рассматривается главным образом брус, в теории упругости помимо бруса изучаются нанряжеиное и деформированное состояния пластин, оболочек, массива, а в строительной механике объектами изучения являются системы, состоящие из стержней (фермы), балок (рамы), пластин и оболочек) во-вторых, в принимаемых допущениях (теории упругости, пластичности и ползучести отличаются друг от друга тем, что в них принимаются различные физические законы, устанавливающие связь между напряжениями и деформациями, но не вводится каких-либо деформационных гипотез, а в сопротивлении материалов физический закон тот же, что и в теории упругости (закон Гука), но, кроме того, принимается дополнительно ряд допущений — гипотеза плоских сечений, ненадавлпвания волокон и т. д.) в-третьих, в методах, используемых для решения задач (в теории упругости приходится решать существенно более слопшые уравнения, чем в сопротивлении материалов, и для их решения приходится прибегать к более сложным математическим методам).  [c.7]

Далее рассмотргш физические уравнения, устанавливающие связь между напряжениями и деформациями при обобщенном плоском напряя енном состоянии. В полярных координатах уравнения закона Гука имеют следующий вид  [c.92]

Уравнения состояния играют важную роль в термодинамике, так как они дают дополнительную информацию о связях между физическими величр"ами, характеризующими состояние.  [c.17]

Химические реакции принадлежат к термически активируемым процессам, поэтому принято относить результат механического воздействия к изменению энергетического активационного барьера химической реакции. При этом предположение о линейной зависимости уменьшения аррениусовской энергии активации (энергетического барьера) термически активируемого процесса от величины растягивающего напряжения обычно вводится произвольно (теории ползучести металлов, уравнения долговечности полимеров и т. д.) или в лучшем случае как первое приближение разложения неизвестной зависимости в ряд Тэйлора. Формализм такого подхода не позволяет раскрыть физический смысл коэффициентов в соответствующих уравнениях (в том числе активационного объема) и более того приводит к противоположному результату при замене растягивающих напряжений сжимающими (вопреки эксперименту) растяжение подлежащей разрыву химической связи увеличивает мольный объем веществ в активирован-i HOM состоянии и согласно классическому уравнению Вант-Гоффа для зависимости константы скорости реакции от давления сжимающее давление должно тормозить реакцию, т. е. сдвигать химическое равновесие в сторону рекомбинации связей.  [c.4]

Если же речь идет о твердом теле с закрепленной осью, то относительно реакций, возникающих в закрепленных точках оси, основные уравнения равновесия утверждают только то, что их результирующая сила и результирующий момент (относительно данной точки) должны быть равны и прямо противоположны результирующей силе и результирующему моменту активных сил, но не дают возможности определить эти реакции в отдельных закрепленных точках оси. Таким образом, основные уравнения равновесия приводят к заключению, что в статических условиях действие связей можно зайенить какой угодно из систем реакций (эквивалентных между собой), приложенных в закрепленных точках и имеющих результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил. Такое заключение, очевидно, неудовлетворительно, так как с физической точки, зрения бесспорно, что при равновесии реакции всегда определяются однозначно. Мы приходим, таким образом, к новому случаю статической неопределенности, который можно сравнить со случаем, уже встречавшимся в п, 10 гл. IX эта неопределенность происходит от того, что в принципах статики твердого тела не принимаются во внимание деформации, вызываемые силами. Это вполне допустимо в первом приближении, так как деформации вообще бывают незначительными, так что следствия, которые вытекают из этого упрощающего предположения, в достаточной степени соответствуют результатам опыта. Но нельзя претендовать на правильное и детальное отображение всех обстоятельств, связанных с рассматриваемым явлением, если мы намеренно пренебрегаем какими-либо существенными элементами этого явления. Поэтому мы не должны удивляться тому, что относительно реакций Ф мы в состоянии определить лишь свойства, относящиеся к ним в целом (т. е. то, что они имеют результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил F), и не можем указать их распределение в каждой точке. Это достигается в теории упругости, где как раз учитываются указанные выше деформации.  [c.114]


Модели физически нелинейной среды при циклическом упруго-пластическом деформировании. При анализе кинетики НДС в наиболее нагруженных зонах элементов конструкций необходимо использовать модели физически нелинейной среды, достаточно полно отражающие основные особенности поведения материала в условиях, близких к эксплуатационным. В общем случае такие модели устанавливают нелинейную связь между циклическими напряжениями и деформациями, либо между их производными, причем указанные зависимости (уравнения состояния, или определяющие уравнения) должны учитывать характерные режимы деформирования и нагрева, а также влияние истории нагружения (поцикловой и временной).  [c.78]

Наиболее физически обоснованной считается гипотеза упрочнения [4, 69], выдвинутая Людвигом и получившая развитие в работах Надаи, Давенпорта и Ю. Н. Работнова как гипотеза уравнения состояния. Она предполагает наличие связи между скоростью деформации, самой деформацией ползучести и напряже-  [c.14]

Однако уравнение ван-дер-Ваальса, дающее глубокое физическое толкование и наглядно объясняющее связь между газообраз14Ым и жидким состоянием вещества, критические явления н другие свойства реальных газов, коли-  [c.60]

Проблема термоцпклической прочности является комплексной проблемой, включающей в себя три основных вопроса. Первый вопрос заключается в разработке уравнений состояния, способных с удовлетворяющей инженерную практику точностью описать кинетику напряженно-деформированного состояния, процессы пластичности и ползучести при переменных нагрузках и температурах. Уравнения состояния должны включать параметры, характеризующие процесс накопления повреждений и разрушения материала. Второй вопрос заключается в выборе физически обоснованной меры повреждаемости материала, характеризующей кинетику разрушения материала на различных стадиях процесса деформирования, и разработке соответствующих кинетических уравнений, устанавливающих связь между указанной мерой и параметрами процесса. Третьим вопросом является формулировка соответствующих гипотез, связывающих кинетику процесса деформирования и накопления повреждений с типом разрушения, и критериев разрушения, связывающих параметры напряженно-деформированного состояния и меры повреждаемости для критических состояний материала. При решении указанных трех проблем должна учитываться существенная нестационарность нагрун<ения н нагрева Б условиях малоциклового термоусталостного разрушения, а формулировка соответствующих уравнений и критериев должна опираться на современные представления физики твердого тела о микро- и субмикроскопическом механизмах пластических деформаций и накопления повреждений в материале [42—64 .  [c.141]

В работах Генки, Мазинга, Хоффа, Милейко, Кадашевича и Новожилова и др. (более полно развитие данного подхода изложено в обзорах [1, 2]) структурные модели использовались для качественной иллюстрации различных особенностей деформационного поведения материалов. Однако уже начиная с исследований Н. Н. Афанасьева, Дж. Бесселинга, В. С. Зарубина они рассматриваются как определенные математические модели в непосредственной связи с проблемой расчета конструкций, изготовленных из конкретных материалов и подверженных соответствующим воздействиям. Отсюда, в частности, возникает задача надлежащего экспериментального определения функций, содержащихся в уравнениях состояния (задача идентификации структурной модели по отношению к конкретному материалу). Весьма существенным преимуществом предлагаемого варианта модели циклически стабильной среды является наличие в уравнениях состояния всего лишь двух определяющих функций. Одна из них характеризует физические свойства подэлементов (реологическая функция), в то  [c.169]

Существует несколько решений точного уравнения энергии пограничного слоя при транспирационном охлаждении со вдувом различных газов в воздушный пограничный слой. В этих решениях учитывается не только совместный тепло- и массоперенос в пограничном слое, но и значительное изменение существенных для переноса свойств смеси (включая число Льюиса), Это особенно важно при высоких скоростях вдува, когда концентрация вдуваемого газа в 0-состоянии высока. (Заметим, что при В—>-0 число Стантона должно стремиться к значению, характерному для простого пограничного слоя воздуха с постоянными свойствами, независимо от того, одинаковы или различны составы вдуваемого газа и газа в основном потоке). Результаты расчетов для переменных физических свойств можно представить в той же форме и той же системе координат, что и для постоянных свойств (рис. 16-5 и 16-6). Однако Bh в этом случае не связана с сохраняемыми свойствами.  [c.404]

УРАВНЕНИЕ СОСТОЯНИЯ — уравнение, к-рое связывает давление р, объём V и абс. темп-ру Т физически однородной системы в состоянии термодинамического равновесия f p, V, Т) = 0. Это ур-ние наз, термическим У. с., в отличие от калорического У.с., определяющего внутр. энергию U системы как ф-щ1ю к.-л. двух из трёх параметров р, V, Т. Термическое У. с. позволяет выразить давление через объём и темп-ру, p=p V, Т), и определить элементарную работу 5A=p5V при бесконечно малом расширении системы й V. У. с. является необходимым дополнением к термодинамич. законам, к-рое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов термодинамики, а определяется из опыта или рассчитывается теоретически на основе представлений о строении вещества методами статистич. физики. Из первого начала термодинамики следует лишь существование калорич. У. с., а из второго начала термодинамики—связь между калорическим и термическим У. с.  [c.236]

Как было показано в гл. 1, вязкость и строение вещества теплоносителя в жидком состоянии неразрывно связаны между собою. Вязкость является наиболее показательной физической характеристикой жидкого теплоносителя,. и это особенно ярко проявляется на примере оргаиических теплоносителей, характеризующихся больщим многообразием строения вещества. В связи с этим даже теоретически исключается всякая возможность описать опытные данные по вязкости всех подгрупп этой группы единым уравнением. Анализ этих опытных данных показывает, что для каждой подгруппы по существу характерна своя температурная зависимость.  [c.198]


Смотреть страницы где упоминается термин Уравнение физические состояния (связи) : [c.15]    [c.58]    [c.10]    [c.69]    [c.535]    [c.147]    [c.5]    [c.878]    [c.16]    [c.603]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.35 , c.48 , c.58 , c.60 ]



ПОИСК



Уравнение состояния

Уравнение физического

Уравнения связей

Уравнения физические (связи)

Уравнения физического состояния

Физическое состояние



© 2025 Mash-xxl.info Реклама на сайте