Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Высокоэластическое состояние

Расчет остаточных напряжений в композитах, состоящих из полимерного связующего и армирующих волокон, является, по существу, задачей вязкоупругого анализа конструкций под действием переменной температуры, когда полимерное связующее переходит из высокоэластического состояния в стеклообразное. Этот расчет легко выполним при помощи существующих методов в предположении о термореологической простоте и линейности свойств полимерного связующего. Однако справедливость развитого подхода все-таки нуждается в проверке, особенно в диапазоне температур, близких к Tg.  [c.217]


Высокоэластическое состояние. Характерной особенностью полимеров, отличающей их от других твердых тел, является наличие высокоэластического состояния, в котором полимер может испытывать без разрушения огромную (сотни процентов) упругую 40  [c.40]

При сжатии газы также проявляют упругость, но эта упругость обусловлена не изменением сил взаимодействия между молекулами газа (в идеальном газе они равны нулю), а их тепловым движением. Такую упругость называют кинетической. Аналогичной упругостью обладают и полимеры в высокоэластическом состоянии.  [c.41]

Из данных табл. 2.2 видно, что W у полимеров колеблется от W 10 дo 10 г/(см -ч- мм рт. ст.). Водопроницаемость сущ,ест-венно зависит от физического состояния полимеров, гибкости их цепей,-плотности упаковки молекул и других факторов. Наибольшей проницаемостью обладают аморфные полимеры с гибкими цепями, находяш,иеся в высокоэластическом состоянии (каучуки, резины), наименьшей — полимеры с жесткими цепями в стеклообразном состоянии. В одном и том же состоянии проницаемость полимера понижается с ростом плотности упаковки его молекул и достигает максимального значения в кристаллическом или частично кристаллическом состоянии (фторопласт-4).  [c.91]

При переходе полимера в высокоэластическое состояние КТР увеличивается примерно на порядок из-за появления свободного объема между молекулами, растущего с ростом температуры.  [c.137]

Рассмотренное упругое тело называется наследственно-упругим, так как к мгновенной упругой деформации, характерной для гуковского тела, здесь добавляется упругая деформация, унаследованная от всех прошлых воздействий. Наследственная упругость свойственна почти всем полимерам в определенном (для каждого материала своем) интервале температур при этих температурах полимер находится в так называемом высокоэластическом состоянии.  [c.765]

Таким образом, релаксационные явления, течение или эластическая деформация образца высокополимера, имеют тепловую природу. Причем переход от высокоэластического к стеклообразному состоянию высокомолекулярных веществ совершается в некотором температурном интервале. Также плавно совершается и переход от высокоэластического состояния к вязкотекучему. Кроме того, пределы температуры стеклования и текучести могут изменяться и в зависимости от метода определения этих величин. Поэтому всегда надо указывать способ, которым пользовались при нахождении температур стеклования и текучести. Условно выбранная средняя температура перехода высокоэластического состояния в стеклообразное обычно называется температурой стеклования Т -  [c.46]


Аналогично установленная температура перехода высокоэластического состояния в вязкотекучее называется температурой текучести Т . Так как в вязкотекучем состоянии становится возможным перемещение целых молекул по отношению друг к другу, температура текучести зависит от длины молекулы и тем больше, чем длиннее молекула или выше молекулярный вес этого вещества.  [c.46]

Степень кристалличности фторопласта-3 при одной и той же скорости охлаждения образцов зависит от молекулярного веса полимера. Чем выше молекулярный вес, тем меньше скорость кристаллизации. При нагревании образца выше 208—210° С фторопласт-3 переходит в высокоэластическое состояние, а затем в вязкотекучее при 300—315° С разлагается, причем разложение ускоряется в присутствии железа, меди, хрома.  [c.22]

Полимерным связующим и пластическим массам на их основе обычно присущи три физических состояния вязко-текучее, высокоэластическое и твердое или стеклообразное, которые зависят от температуры и определяются величиной деформации. На температуру перехода полимера из одного состояния в другое оказывают влияние молекулярный вес и структура полимера, наличие пластификаторов, наполнителей и другие факторы. Переработка пластических масс осуществляется в основном, когда они находятся в вязко-текучем или высокоэластическом состоянии.  [c.13]

Вспенивание высокополимеров в высокоэластическом состоянии при температурах, несколько превышающих температуру стеклования.  [c.143]

Стеклование полимеров — переход полимера из высокоэластического состояния в стеклообразное при охлаждении. Характеризуется точкой стеклования, т. е. температурой (°С), при которой скачкообразно изменяется коэффициент теплового расширения полимера изменение же эластических свойств происходит значительно более плавно и может происходить в интервале температур в 50° С (температура стеклования).  [c.239]

В диапазоне температур Тс и Тщ находится область так называемого высокоэластического состояния. — Прим. ред.  [c.19]

Для перерасчета модулей упругостей при растяжении и при сдвиге часто пользуются формулой EI2, = G. При этом принимают значение коэффициента Пуассона (х = 0,5. У изотропных пластмасс (X не является константой, как и модуль упругости (х приближается к 0,5 только тогда, когда пластмассы находятся в высокоэластическом состоянии. Это имеет место только у кристаллических термопластов при температурах, значительно более высоких, чем Т,. У жестких и хрупких пластмасс х колеблется около значения 0,3, а у некоторых — 0,4. Например, при 30° С ц равно [23]  [c.33]

В качестве пластификаторов используются разнообразные органические продукты, предназначенные прежде всего для повышения пластичности (уменьшения вязкости) и расширения интервала высокоэластического состояния полимерных материалов. Действие пластификаторов многообразно. При пластифицировании эластомеров изменяются температура стеклования, вязкотекучие и некоторые другие свойства, определяюш,ие переработку резиновых смесей, а также эластичность вулканизатов. Понижение вязкости приводит к уменьшению энергозатрат при смешении кау-чуков с ингредиентами, улучшению качества каландрованных и шприцованных заготовок и снижению температур на всех стадиях переработки. В результате уменьшается опасность преждевременного начала вулканизации и открывается возможность увеличить содержание наполнителей в резиновой смеси, что положительно сказывается на стоимости резин.  [c.18]

Фторопласт-4 (фторлон-4) политетрафторэтилен (— F — Fj—) является аморфно-кристаллическим поли.мером. До температуры 250 °С скорость кристаллизации мала и не влияет на его механические свойства, поэтому длительно эксплуатировать фторопласт-4 можно до температуры 250 °С. Разрушение материала происходит при температуре выше 4i5° . Аморфная фаза находится в высокоэластическом состоянии, что придает фторопласту-4 относительную мягкость. При весьма низких температурах (до —269 °С) пластик не охрупчивается. Фторопласт-4 стоек к действию растворителей, кислот, щелочей, окислителей. Практически он разрушается только под действием расплавленных щелочных металлов и элементарного фтора, кроме того, пластик не смачивается водой. Политетрафторэтилен малоустойчив к облучению. Это наиболее высококачественный диэлектрик. Фторопласт-4 обладает очень низким коэффициентом трения (/ = 0,04), который не зависит от температуры (до 327 °С когда начинает плавиться кристаллическая фаза).  [c.453]


Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку — главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000 %), которые почти полностью обратимы. При нормальной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.  [c.482]

Метод определения степени высыхания по твердости покрытий при 20 °С основан на возрастании скорости затухания амплитуды качания маятника с уменьшением степени отверждения покрытий. Метод определения степени высыхания покрытий по твердости в интервале температур основан на способности лакокрасочной пленки при повышении температуры переходить в область высокоэластического состояния (размягчения). Чем меньше отверждена пленка, тем в большей степени изменяется ее твердость в интервале температур. Метод заключается в измерении при различных температурах амплитуды колебания маятника, помещенного на покрытие.  [c.62]

Полимеры с пространственной структурой находятся только в стеклообразном состоянип, Г2,дкооетчптая структура позволяет получать полимеры в стеклоооразном и высокоэластическом состояниях.  [c.24]

Температура перехода из высокоэластичесяого в стеклообразное состояние (и обратно) называется температурой стеклования( с температура перехода из высокоэластического состояния в вязкотекучее (и обратно) - температурой текучести.( г)  [c.24]

Линейные полимеры отличаются большой длиной молекулы при малом ее поперечнике. Например, у полистирола при коэффициенте полимеризации п, равном 6000, длина молекулы составляет около 1,5 -10- см, при поперечном размере 1,5-10 см. Линейные полимеры обычно более легко растворимы и более гибки, чем пространственные. Многие линейные полимеры сгюсобны перерабатываться в тонкие волокна и пленки. Некоторые из них являются эластомерами — резиноподобными материалами. Аморфные полимеры с линейной структурой молекул имеют характерную зависимость деформации от температуры, представленную на рис. 3-10. На этой диаграмме ясно видны три стадии стеклообразное состояние ниже температуры стеклования Тс при температуре в пределах от Т до температуры вязкотекучего состояния полимер находится в высокоэластическом состоянии при температуре выше наступает вязко гекучее состояние. Рабочую температуру полимеров следует выбирать не выше температуры стеклования.  [c.116]

Политетрафторэтилен (ПТФЭ) I— F — СР. —] в СССР выпускается под названием фторопласт-4 (торговая марка) и получается полимеризацией тетрафторэтилена Fj Fj. Степень кристалличности ПТЭФ около 90 % (при температуре эксплуатации 50—70%). Кристаллическая структура нарушается при температуре около 327 °С, после чего полимер переходит в высокоэластическое состояние, сохраняющееся вплоть до температуры разложения (около 415 "С). Рабочая температура от —269 до 260 °С.  [c.207]

Деформация прозрачного полимерного материала сопровождается образованием в нем оптической анизотропии. Механизм образования оптической анизотропии под действием напряжения связан с поляризуемостью отдельные атомов и частей макромолекул.. В стеклообразном и высокоэластическом состоянии оптическая анизотропия связана с поляризуемостью различных элементов структуры полимера, поэтому и оптическая чувствительность в этик состояниях различна. В стеклообразном состоянии происходит изменение межатомных расстояний и валентных углов полимерной цепи, поэтому оптическая чувствительность более связана с. поляризуемостью атомов цепи или отдельных звеньев. В высокоэластическом состоянии происходит раскручивание и ориентапия макромолекул, поэтому оптическая чувствительность связана в основном с поляризуемостью кшетичес1ких сетментов [24, 39, 74].  [c.18]

Следующая температурная область примыкает к Tg со стороны больших температур. Выше уже было показано, что при приближении к Tg со стороны меньших температур понижается о э и сглаживается соответствующий ему максимум на диаграмме напряжений. При Т= Tg — АТ максимума нет вовсе и диаграмма о — е состоит из сопрягаемых криволинейным участком прямолинейных участков — первого — крутого со вторым — пологим (рис. 4.94, в, диаграмма Tg — АТ). Точке пересечения этих двух прямолинейных участков соответствует так называемое критическое напряжение о р. В диапазоне температур Т гй Гкр диаграмма имеет вид, изображенный на рис. 4.94, г по мере роста Т в указанном диапазоне диаграмма располагается все ниже и ниже, вместе с этим уменьшается и а р. Наконец, Оцр обращается в нуль. Та температура, при которой это происходит, называется критической (Ткр). Начиная с Г = Т р и при более высоких температурах (в диапазоне Гкр s Г < Г ) вид диаграмм растяжения становится таким, какой показан на рис. 4.94,й. Напомним, что вся деформация в этом диапазоне температур (небольшая упругая и огромная высокоэластическая) Появляющиеся в температурной области Г < Г,, высокозластические деформации происходят с образованием шейки и ориентированием всего образца. Однако вся картина в общем-то аналогична той, которая была рассмотрена в области Т р < 7 < Tg, но все же отличается тем, что начало образования шейки соответствует весьма малому напряжению, тогда как при Т < Tg ориентационное упрочнение происходит быстрее, чем в высокоэластическом состоянии. В следующем диапазоне темпера-тур (Т Г < ту) деформация е содержит два слагаемых высокоэластическую деформацию e j, и остаточную деформацию 8о . Измеряя деформацию в конце каждого шага нагружения и производя разгрузку, можно отделить одно слагаемое от другого. По мере роста Т в указанной выше области доля остаточной деформации растет. Наконец, при Т = Tf деформация становится полностью необратимой и образец течет при очень малом напряжении.  [c.344]

Модуль упругости у полимера в стеклообразном состоянии (рис. 4.94, о, б, в) имеет величину порядка 10 кГ1см , что меньше, чем у конструкционных металлов примерно в 100—200 раз, однако больше, чем у этого же полимера, но в высокоэластическом состоянии, примерно на три десятичных порядка. Модуль высокой эластичности в процессе воздействия нагрузки уменьшается, стремясь к равновесному Е . Динамический модуль упругости высокоэластичных полимеров зависит от скорости деформаций и частоты колебаний и складывается из двух частей  [c.345]


Некоторая дополнительная информация о полимерах в высокоэластическом состоянии. А. П. Александровым и Ю. С. Лазуркиным в 1939 г. был с( юрмулирован принцип тем  [c.348]

В высокоэластическом состоянии полимер каучу ко подобен. Релаксация у таких полимеров имеет вид, изображенный на рис. 4.107.  [c.349]

Рис. 4.107. Кривая релаксации напряжения кау-чукоподоАного полимера (полимера п высокоэластическом состоянии) / — почти мгновенная часть релаксации, 2 — переходная часть релаксации. 2 — выделенная переходная часть релаксации, 3 — кривая устанопившейся релаксации. Рис. 4.107. <a href="/info/245636">Кривая релаксации напряжения</a> кау-чукоподоАного полимера (полимера п высокоэластическом состоянии) / — почти мгновенная часть релаксации, 2 — <a href="/info/120995">переходная часть</a> релаксации. 2 — выделенная <a href="/info/120995">переходная часть</a> релаксации, 3 — кривая устанопившейся релаксации.
На набухании и растворении полимеров сказывается и их физическое состояние. Конечно, легче всего набухают и раство ряются полимеры в вязкотекучем и высокоэластическом состояниях, так как молекулы их связаны друг с другом наименее прочно. Значительно труднее растворяются стеклообразные полимеры. Сначала при контакте полимера с растворителем молекулы растворителя проникают в поверхностный слой полимера, что вызывает поверхностное набухание его. Набухший полимер начинает растворяться таким же образом, как и высокоэластичный полимер. Граница раздела между твердым полимером, в который еще не проник растворитель, и набухшим его слоем, постепенно продвигается внутрь со скоростью диффузии растворителя в стеклообразный полимер.  [c.48]

Практически замораживание осуществляется следующим образом нагруженную модель доводят при но-етененном подъеме температуры до высокоэластического состояния (температуры замораживания ) и, не снимая нагрузки, охлаждают до комнатной температуры. После охлаждения нагрузка снимается, а в модели полностью сохраняется напряженное состояние.  [c.70]

Материал МИХМ-ИМАШ, изготовленный на основе стиролалкидных смол, применяется в основном прп исследованиях методом замораживания , так как имеет высокую оптическую чувствительность только в условиях высокоэластического состояния [36]. Этот материал практически ие имеет краевого эффекта времени, хорошо отжигается, но сложен в изготовлении.  [c.83]

Высокоэластическое состояние присуще только высокополи-мерам, характеризуется способностью материала к большим обратимым изменениям формы при небольших нагрузках (колеблются звенья, и макромолекула приобретает способность изгибаться).  [c.439]

Полимеры с пространственной структурой находятся только в стеклообразном состоянии. Редкосетчатая структура позволяет получать полимеры в стеклообразном и высокоэластическом состояниях. Различные физические состояния полимера обнаруживаются при изменении его деформации с температурой. Графическая зависимость деформации, развивающейся за определенное время при заданном напряжении, от температуры называется термомеханической кривой (рис. 201). На кривых имеются три участка, соответствующие трем физическим состояниям. Средние температуры переходных областей называются температурами перехода. Для линейного некристаллизирующегося полимера (кривая 1) область / — область упругих деформаций (е = 2ч-5 %), связанная с изменением расстояния между частицами вещества. При температуре ниже полимер становится хрупким. Разрушение происходит в результате разрыва химических связей в макромолекуле. В области II небольшие напряжения вызывают перемещение отдельных сегментов макромолекул и их ориентацию в направлении действующей силы. После снятия нагрузки молекулы в результате действия межмолекулярных сил принимают первоначальную равновесную форму. Высокоэластическое состояние характеризуется значительными обратимыми деформациями (сотни процентов). Около точки кроме упругой и высокоэластической деформации возникает и пластическая.  [c.440]

Термомеханические кривые полимеров с сетчатой структурой (рис. 9.5, в) не имеют ни области С, ни области В и таким образом, не переходя в вязкотекучее состояние, подвергаются тепловому разложению — деструкции (/ д). В редкосетчатых полимерах иногда наблюдают высокоэластическое состояние (кривая 2).  [c.222]

Физико-механические свойства полимеров определяются структурой и физическим состоянием, которое в зависимости от температуры может быть стеклообразным, высокоэластйческим, вязкотекучим (гель). Стеклообразные полимеры представляют собой твердые аморфные вещества, атомы в которых находятся в равновесии и макромолекулы не перемещаются. Перемещение макромолекул полимера не наблюдается и в высокоэластическом состоянии, однако за счет подвижности отдельных звеньев молекулы приобретают способность изгибаться, что приводит при небольших нагрузках к значительным упругим и высокоэластичным деформациям. В вязкотекучем гелеобразном) состоянии все макромолекулы подвижны и полимеры отличаются от жидкостей лишь большей вязкостью.  [c.147]

Полимеры с линейной, разветвленной и редкосетчатой структурой (термопласты) могут находиться в стеклообразном и высокоэластическом состояниях, а с пространственной структурой (термоактивные) только в стеклообразном.  [c.148]


Смотреть страницы где упоминается термин Высокоэластическое состояние : [c.41]    [c.46]    [c.92]    [c.17]    [c.18]    [c.23]    [c.94]    [c.47]    [c.13]    [c.14]    [c.18]    [c.19]    [c.222]    [c.227]    [c.294]   
Химия и радиоматериалы (1970) -- [ c.59 ]

Справочник по электрическим материалам Том 1 (1974) -- [ c.15 , c.566 ]

Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.61 , c.135 ]



ПОИСК



Высокоэластическое состояние полимеров

Механическое состояние вязкое высокоэластическое

Состояние материала высокоэластическо

Состояние материала высокоэластическо обобщенное

Состояние материала высокоэластическо осесимметричное

Состояние материала высокоэластическо хрупкое

Способы переработки пластмасс в детали в высокоэластическом состоянии



© 2025 Mash-xxl.info Реклама на сайте