Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зацепление винтовое контактом

Так как каждое из пары косозубых колес представляет собой цилиндрическое колесо с зубьями, расположенными по винтовой линии, то зубья входят в зацепление плавно контакт пары зубьев начинается в точке на торце, по мере поворота колес контакт распространяется на линию, длина которой постепенно увеличивается, а затем также плавно уменьшается до точки на противоположном торце колес.  [c.98]


Проблема теоретически и экспериментально обоснованного расчёта винтовой передачи до настоящего времени ещё не решена. Известны случаи, когда, несмотря на малые нагрузки, винтовые колёса очень быстро изнашивались. Ввиду того что зацепление винтовой передачи в каждый данный момент происходит теоретически (согласно теории зацепления) в одной точке, а практически — в результате износа и контактной деформации сжатия, контакт распространяется на небольшую площадку, то даже при небольшой нагрузке на этой площадке возникают высокие удельные давления. Если не принимать во внимание износа, то контактные напряжения, даже при небольших допускаемых на практике нагрузках, достигают очень высоких значений. Учесть же влияние износа на размеры контактной площадки весьма затруднительно. Поэтому расчёт винтовых колёс может быть основан только на эмпирических данных.  [c.356]

Дисковые шеверы для колес внешнего зацепления. При шевинговании ось шевера устанавливается под углом к оси обрабатываемого колеса. Угол наклона зубьев шевера отличается от угла наклона зубьев колеса на величину угла скрещивания осей. Зацепление винтовой пары характеризуется точечным контактом и наличием продольного скольжения между сопряженными зубьями, которое и используется для срезания припуска.  [c.1066]

В зацеплении Новикова контакт зубьев происходит в точке и зубья касаются только в момент прохождения профилей через эту точку (рис. 9.10), а непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому зацепление Новикова может быть только косозубым с углом наклона зубьев р = 10.. . 24°. Положение точки контакта зубьев характеризуется ее смещением от полюса, а линия зацепления располагается параллельно оси колеса. В результате упругой деформации точечный контакт переходит в контакт по малой площадке (рис. 9.10). При взаимном перекатывании зубьев контактная площадка перемещается вдоль зуба с большой скоростью, превышающей окружную скорость колес, что создает благоприятные условия для образования устойчивого масляного слоя между зубьями. По этой причине потери на трение в передаче Новикова значительно меньше.  [c.103]

Обработку производят дисковым шеве-ром. В процессе шевингования инструмент и колесо вращаются с угловой скоростью соответственно ш, и 0). , воспроизводя при этом зацепление винтовой передачи с теоретическим точечным контактом вследствие наличия слоя металла, удаляемого режущими кромками канавок, на поверхностях зубьев шевера на каждом рабочем ходе (движение подачи 0 ) фактическая площадь контакта имеет вид узкого овала, большая ось которого располагается примерно вдоль зуба.  [c.107]


Для упрощения изготовления колес участки А, и заменяют цилиндрами, а участки Д, и Да усеченными конусами. Если на сопряженных участках гиперболоидов вдоль линий их контакта нарезать зубья с одинаковым нормальным шагом р и углом зацепления то получим зубчатые передачи с постоянным передаточным отношением. Передача с цилиндрическими косозубыми колесами на участке Д1 —Л, называется винтовой, частным случаем которой является червячная передача, а зубчатая передача на участке Д( — До в виде конических косозубых колес называется гипоидной зубчатой передачей. Чаще всего угол скрещивания осей валов этих передач 8 = 90°.  [c.241]

Если линию М,,М (см. рис. 10.3, а), образующую эвольвентную поверхность, расположить под углом по отнощению к линии ВВ касания производящей плоскости Q с основным цилиндром, то при ее обкатывании получим винтовую эвольвентную поверхность. Часть ее 2 (см. рис. 10.3, в), ограниченную цилиндрической поверхностью верщин 5, используют в качестве рабочей поверхности зуба косозубого колеса. Постоянство передаточного отношения пары косозубых колес обеспечивается благодаря их сопряженности в любом торцовом сечении. Так как боковые поверхности сопрягаемых эвольвентных зубьев (рис. 10.5) образуются одной и той же прямой при обкатывании ее по двум основным цилиндрам радиусов гы и гь2, ТО ИХ линия контакта К К тоже является прямой линией. На плоскости зацепления 6162 2 1. как и на основном цилиндре, контактная линия расположена под углом р ,. На поверхностях цилиндров, соосных с основным цилиндром, углы наклона линии зуба отличаются от р они тем меньше, чем больше диаметр цилиндра.  [c.98]

Представим, что два начальных цилиндра диаметрами и d v i (рис. 11.2) перекатываются с угловыми скоростями 0)1 и 0)2 без скольжения, обеспечивая постоянное передаточное отношение , 2 при заданном межосевом расстоянии Выберем на линии пп, расположенной под углом 90° — ад к линии центров 0 0 на расстоянии I от полюса точку К и проведем через нее параллельно осям колес линию зацепления КК. Примем скорость перемещения точки контакта зубьев вдоль линии зацепления постоянной. Тогда при постоянной скорости вращения начальных цилиндров точка контакта К опишет на вращающихся системах, связанных с начальными цилиндрами, винтовые линии ККг и КК.2-  [c.121]

Схема конического зацепления Новикова показана на рис. 12.15. Колесо 1 выполнено с выпуклыми, а колесо 2 — с вогнутыми зубьями их контакт происходит в точке К. Нормаль к профилям зубьев в этой точке пересекает линию 1ЕО касания начальных конусов с углами при вершинах бц , и бд в точке 1Е. При вращении конусов точка контакта К перемещается вдоль линии К К — линии зацепления, параллельной линии 1Е0, и нормаль к профилям в этой точке постоянно пересекает линию WO. На боковых поверхностях зубьев траектория точки контакта соответствует винтовым линиям КК и КК .  [c.137]

Для контакта гипоидных колес справедливо соотношение (13.2), т. е. передаточное отношение гипоидных колес выражается через числа зубьев так же, как и винтовых зубчатых колес. В качестве сопряженных профилей в гипоидном зацеплении применяются любые, в том числе и эвольвентные, криволинейные поверхности конических зубчатых колес. Касание гипоидных колес в точке и большое скольжение в процессе зацепления вызывают необходимость применения в силовых механизмах специальных смазочных материалов для улучшения условий контактирования зубьев.  [c.145]

Классификация передач. По принципу передачи движения от ведущего звена к ведомому передачи делятся на две группы передачи трением — с непосредственным контактом жестких тел (фрикционные) и гибкой связью (ременные) передачи зацеплением — с непосредственным контактом гвердых тел (зубчатые, винтовые н червячные) и гибкой связью (цепные, зубчатым ремнем).  [c.105]


Сопряженные поверхности косых зубьев двух цилиндрических зубчатых колес образуются от последовательного качения общей касательной к основным цилиндрам плоскости пп по основным цилиндрам радиусов и первого и второго зубчатого колеса. Выбранная на плоскости пп прямая ии при последовательном обкатывании по основным цилиндрам образует сопряженные поверхности в виде двух взаимно огибаемых геликоидов, линейчатый контакт которых образует поле зацепления. Угол называется углом наклона винтовой линии зубьев.  [c.240]

Угол давления ад в торцовом сечении равен 20—30°. Через точку iWo проведем прямую М М, параллельную осям цилиндров и примем эту прямую за линию зацепления. Положим, что точка контакта (зацепления) зубьев равномерно перемещается по линии зацепления М М от точки M , к точке М. Так как линия зацепления параллельна осям начальных цилиндров, то эта точка контакта опишет на цилиндрических поверхностях с радиусами ги и Г2А, жестко связанных с начальными цилиндрами и равномерно вращающихся вместе с ними, винтовые линии и ЩМ. Радиальные расстояния г и и Г2/г до точек контакта, как видно из треугольников и РоМ О (рис. 241),  [c.226]

Известно, что относительное движение звеньев, вращающихся вокруг скрещивающихся осей с угловыми скоростями i и <02, является винтовым, т. е. может быть представлено как вращение вокруг мгновенной винтовой оси (оси мгновенного вращения-скольжения) с одновременным скольжением вдоль этой оси. Определение винта относительного движения по заданным скользящим векторам единственное решение, т. е. для звеньев, вращающихся вокруг скрещивающихся осей, существует лишь одна мгновенная винтовая ось. Обратная задача — нахождение векторов Ш] и 2 по заданному винту относительного движения — имеет бесчисленное множество решений, т. е. можно подобрать бесчисленное множество пар осей, вращение вокруг которых сводится к одному и тому же винту относительного движения. Каждая из этих пар осей называется сопряженной данному винту или парой осей составляющих вращений. Для одной точки контакта сопряженных поверхностей из бесчисленного множества пар осей составляющих вращений можно выбрать ту, через которую проходит общая нормаль к сопряженным поверхностям. Однако в общем случае каждой точке контакта соответствует своя пара осей составляющих вращений. Осями зацепления эти пары осей будут лишь в том случае, если они пересекаются общей нормалью к сопряженным поверхно стям в любой точке контакта. Другими словами, положения осей зацепления не зависят от положения контактной точки.  [c.407]

Исходя из отмеченного характера зацепления как правильного, но точечного, можно заключить, что винтовые колеса допустимо использовать лишь в качестве неосновных передач в машинах, например, в передачах на распределительные валики в станках и поршневых двигателях, в передачах к топливным насосам последних ИТ. п. В перечисленных передачах используется свойство винтовых колес правильно и бесшумно работать на больших скоростях, но учитывается неспособность их благодаря точечному контакту передавать большие окружные силы.  [c.506]

Смещение средней плоскости колеса может быть проконтролировано по пятну контакта. Последнее представляет собой часть боковой поверхности зуба червячного колеса, на которой располагаются следы краски при сопряжении его с парным червяком, после вращения передачи, при легком торможении. Краску наносят на винтовую поверхность червяка, после чего он вводится в зацепление с зубчатым колесом. Последующим медленным поворотом червяка получают отпечатки на зубьях червячного колеса  [c.458]

Острый угол между касательной к винтовой линии пересечения боковой поверхности зуба с делительным (или с основным) цилиндром и образующей делительного (или основного) цилиндра Угол между касательной к полюсной линии зуба и образуюшей начального цилиндра Отношение скорости скольжения в данной точке зацепления к скорости перемешения данной рабочей поверхности в этой точке относительно зоны контакта  [c.221]

Зацепление М. Л. Новикова (фиг, 69) основано на новом принципе передачи движения. В сечении плоскостью, перпендикулярной осям колес, линия зацепления обращается в точку, и зубья касаются друг друга только в момент прохождения профилей через эту точку, а непрерывность передачи движения от одного колеса к другому обеспечивается винтовой формой зубьев, при которой точка их контакта перемещается вдоль, линии, параллельной осям колес.  [c.512]

Покажем, что в неортогональных косозубых гипоидных передачах винтовое движение производящей поверхности, определяемое параметрами винтового производящего колеса hx, и со ., действительно обеспечивает получение линейчатого контакта сопряженных поверхностей зубьев при любых значениях угла между осями, передаточного числа и угла исходного контура инструмента. Для этого следует определить поверхности станочного зацепления шестерни и колеса и убедиться в том, что эти поверхности совпадают.  [c.72]

Эта система уравнений определяет геометрическое место характеристик X и V в неподвижном пространстве, т. е. поверхность зацепления передачи. Следовательно, выбранное винтовое движение производящей плоскости обеспечивает получение линейчатого контакта сопряженных поверхностей зубьев в неортогональных косозубых гипоидных передачах при любых значениях межосевого угла 0, расстояния Е, передаточного числа i и угла исходного контура инструмента р.  [c.74]


Для образования зацеплений с точечным контактом абсолютное движение производящей поверхности в самом общем случае может быть любым. Относительное движение производящей поверхности по отношению к каждому из нарезаемых колес будет определяться различными мгновенными осями с различными значениями параметров винтового движения. Каждому движению производящей поверхности будет соответствовать новая линия зацепления в нарезанной зубчатой паре, которая может быть ориентирована в пространстве самым различным образом. Для того чтобы из всего многообразия вариантов выбрать такой, при котором линия зацепления занимает заданное положение (например, проходит через определенную — обычно среднюю—точку зацепления), бесконечное многообразие движений производящей поверхности ограничивается следующим условием векторы скоростей Vi,. и Угс в относительном движении производящей поверхности по отношению к каждому из нарезаемых колес в точке, через которую должна проходить линия зацепления, должны лежать в плоскости, касательной производящей поверхности при ее положении в этой точке.  [c.88]

Диагональность контакта и изменение кривизны линии зуба при винтовом движении производящего колеса являются следствием того, что отклонение угла зацепления (22) и отклонение направления линии зуба (23) имеют вдоль зуба переменное значение (изменяются значения L . и р .).  [c.105]

При вращении колес точка контакта двух винтовых линий зубьев перемещается от одного торца колес к другому. Непрерывность зацепления осуществляется вследствие осевого перекрытия зубьев ( 2 >Рх Рис- Ч.28). Точка контакта перемещается по линии зацепления L-L параллельно полюсной линии П-П. Причем относительное положение профилей в плоскости, проходящей через точку Kq параллельно торцам, остается неизменным (рис. 11. 29), угол давления не меняется.  [c.288]

Винтовая передача (рис. 8.56) осуществляется цилиндрическими косозубыми колесами. При перекрестном расположении осей валов начальные цилиндры колес соприкасаются в точке, поэтому зубья имеют точечный контакт. Векторы окружных скоростей колес направлены под углом перекрещивания, поэтому в зацеплении наблюдается большое скольжение. Точечный контакт и скольжение приводят к быстрому износу и заеданию даже при сравнительно небольших нагрузках. Поэтому винтовые передачи применяют главным образом в кинематических цепях приборов. В силовых передачах их заменяют червячными передачами с многозаходными червяками. Во многих случаях такая замена целесообразна и в передачах приборов. Прочностной расчет винтовых передач [10] вы-  [c.208]

Выбор метода обработки зависит от качества зацепления червячной передачи. Червячные колеса для червяков с углом подъема винтовой линии до 8° обрабатывают методом радиальной подачи (рис. 29, а). При большем угле происходит повреждение боковых поверхностей зуба, что вызывает ухудшение пятна контакта. Для больших углов подъема червяков и при обработке фрезами-летучками применяется способ тангенциальной подачи (рис. 29, б). Комбинированный способ ради-ально-тангенциальной подачи (рис. 29, в) сочетает в себе преимущества обоих способов.  [c.589]

В зацеплении Новикова контакт зубьев происходит в точке и зубья касаются только в момент прохождения профилей через эту точку (рис. 10.7), а непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому зацепление Новикова может быть только косозубым с углом наклона зубьев = = 15...20°. Положение точки контакта зубьев характеризуется ее смеицением от полюса, а линия зацепления располагается параллельно оси колеса. В результате упругой деформации и приработки под нагрузкой точечный контакт переходит в контакт по малой площадке (рис. 10.7). При взаимном перекатывании зубьев контактная площадка перемещается вдоль зуба с больщой  [c.160]

На рис. 503, а приведено червячное колесо с такими зубьями, а на рис. 503, б показано нарезание колеса при помощи червячной фрезы. В червячной передаче такой конструкции независимо от того, какого типа будет червяк — с архимедовой винтовой поверхностью витков или эвольвентной — получается правильное зацепление, причем контакт между зубьями будет не точечный, алиней-н ы й, при котором усилие между зубья.ми распределяется по всей ширине обода колеса. При таком зацеплении, т. е. правильном и с линейным контактом, передача способна работать при высоких оборотах червяка (червяк обыкновенно непосредственно соединяется с валом электродвигателя) и передавать на колесо большие усилия. В результате получается тип мощной червячной передачи, применяющейся, например, в грузоподъемных машинах, в эскалаторах метро и тяжелых станках.  [c.500]

Основным методом зубошевинговання в настоящее время является обработка колес цилиндрическим шевером на скрещивающихся осях (фиг. 63). В процессе шевингования инструмент и колесо, введенные в плотное зацепление на скрещивающихся осях, быстро вращаются (фиг. 63, б —движения / и 2), воспроизводя при этом зацепление винтовой пары с теоретическим точечным зацеплением вследствие наличия слоя металла, удаляемого режущими кромками канавок на поверхностях зубьев шевера на каждом проходе (движение вдоль оси колеса 3), фактический контакт распространяется на небольшую поверхность зубьев колеса, расположённую вокруг контактной точки.  [c.183]

В процессе шевингования инструмент и колесо находятся во вращении, воспроизводя зацепление винтовой передачи с точечным контактом. Вследствие скрещивания осей шевера и заготовки возникает составляющая скорости скольжения профилей, направленная вдоль образующих зубьев. Данная составляющая является движением резания, при котором острые кромки стружечных канавок зубьев шевера срезают с поверхностей зубьев колеса тонкие стружки, образуя профиль зубьев колеса, сопряженный с профплем зубьев инструмента — шевера. Шевингование позволяет повысить точность зубчатых колес по нормам плавности и контакта ГОСТ 1643—81 Передачи зубчатые цилиндрические. Допуски . В отношении требований по плавности достигается уменьшение Еолпистости поверхности зубьев, уменьшение погрешностей шага зацепления и профиля зубьев, а по контакту обеспечивается увеличение протяженности контакта по высоте зубьев. Уменьшается также радиальное биение зубчатого венца, переходящее обычно в накопленную погрешность окружного шага.  [c.622]

Конструктивные присоединительные элементы с подвижным контактом образуют подвижные соединения, иапри-мер зубья зацеплений, элементы деталей подшипников каче-Г1ИЯ, элементы направляющих прямолинейного движения, поверхности кулачков и толкателей и т. п. Все такие элементы составляют кинематические пары поступательные, вращательные, винтовые и др. В подвижных соединениях сопряженные элементы обеспечивают взаимную ориентацию сопря-гаемых деталей и передачу усилий при их относительном движении по заданному закону. Изображения таких пар см. 17 Изображения соединений деталей . Размеры формы таких ). 1е ептов выгюлняются, как правило, с высокой точностью, поэтому па рабочих чертежах эти размеры имеют малые допуски.  [c.135]


Рассмотрим первый вариант как наиболее распространенный. В этой передаче два начальных цилиндра с диаметрами а,, и перекатываются друг по другу без скольжения (см. рис. 216) Проведем из точки Ро линию под углом (90° — ад) к линии центров колес О1О2 и на расстоянии I от точки Р возьмем точку К (здесь Од — угол давления, образованный нормалью к поверхности зуба в точке К и касательной к начальным окруж-нос ям, проведенной через точку Ро). Проведем линию зацепления Кк, параллельную линии полюсов РоР. Точка контакта зубьев К перемещается вдоль линии зацепления с постоянной скоростью при постоянных угловых скоростях вращения начальных цилиндров, а на поверхностях, связанных с вращающимися ци-лигдрами, точка К" опишет винтовые профильные линии КП и КПг- Если взять теперь в качестве образующей фигуры окружность радиуса I и перемещать ее поочередно по винтовым профильным линиям так, чтобы точка К все время совпадала с этими линиями, то следы образующей окружности создадут винтовые цилиндры. Часть выпуклого цилиндра образует зуб шестерни, а вогнутого — впадины колеса. Зуб шестерни, имеющий круговую форму в торцовом сечении, находится на внешней стороне начального цилиндра, а впадина на втором колесе — внутри начального цилиндра.  [c.341]

Нагрузочная способность передач с эвольвентным зацеплением ограничена малыми радиусами кривизны профилей зубьев и, следовательно, значительными контактными напряжениями. Повышение контактной прочности достигается применением круговинтового зацепления М. Л. Новикова, в котором профили зубьев колес в торцовом сечении ограничены дугами окружностей близких радиусов (рис. 3.114). Зуб шестерни 2 делается выпуклым, а зуб колеса 1 — вогнутым. Линия зацепления расположена параллельно осям колес, и поэтому площадка контакта зубьев здесь перемещается не по профилю зубьев, как в эвольвентной передаче, а вдоль зубьев. Непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому зацепление Новикова может быть только косозубым. Практически угол р = 10...30°.  [c.372]

Если контакт звеньев происходит по линии, то для каждой точки контактной линии должно соблюдаться условие (9.1). Прямая линия, через которую проходят нормали к сопряженным поверхностям всех точек контакта сопряженных поверхностей, называется осью зацепления. Из теоретической механики известно, что при вращательном движении звеньев со скрещивающимися осями их относительное движение является винтовым, совокупным вращательным движением со скоростью (0,2 относительно мгновенной винтовой оси вращения и поступательным движением со скоростью Uij вдоль нее. Эта ось является линией касания аксоидных поверхностей, связанных со звеньями. Так как и через ось зацепления, и через винтовую ось проходят нормали, то эти оси совпадают. Уравнение винтовой оси  [c.88]

С целью увеличения нагрузочной способности зацепления круговинтовые зубья на каждом колесе выполняют с головкой и ножкой. Винтовые поверхности таких зубьев образуются аналогично указанному выше с помощью окружностей, перемещающихся по винтовым линиям на начальных окружностях колес. Головки зубьев выполняют с выпуклым профилем, ножки — с вогнутым, которые связаны между собой небольшим участком, очерченным переходной кривой (рис. 11.4). В таком зацеплении контактирование зубьев происходит одновременно на головке и ножке зубьев каждого колеса пары. Благодаря этому увеличивается количество одновременно контактирующих зубьев. Точки контакта К К нг головках и ножках зубьев сдвинуты друг относительно друга на некоторое расстояние д, зависящее от угла наклона зубьев р и угла давления а. В этом механизме образуются две линии зацепления. Одна линия К К находится перед полюсом, другая КК — за полюсом. Каждая линия образуется перемещением общей точки контакта начальной ножки зуба одного зубчатого колеса с начальной головкой зуба парного зубчатого колеса. Этот вариант зацепления Новикова с двумя линиями зацепления называется дозаполюсным.  [c.123]

Касание таких начальных поверхносте , не совпадающих с аксоидны-ми,— точечное, поэтому и контакт зубьев в зацеплениях тоже переходит в точечный. Такие механизмы с цилиндрическими начальными поверхностями (рис, 13.1,, б) называются винтовыми, зубчатыми, а с коническими поверхностями (рис. 13.1, в) — гипоидными.  [c.144]

Последующие изменения пара.метров зацепления червячного механизма заключаются в создании лучших условий контакта его аяементов. Они направлены на уменьшение зазоров между зубьями и витками и на более благоприятное взаимное положение контактных линий и векторов относительных скоростей. Это достигается отказом от эвольвентных профилей и использованием вогнутых профилей витков червяков, благодаря чему контактируют элементы с одинаковым знаком кривизны. Число зубьев (заходов) обычно принимается в диапазоне 21 = 1...4. Шаг винтовой линии по делительному цилиндру называют ходом зуба и обозначают через Расстояние между одноименными линиями соседних винтовых зубьев по линии пересечения осевой плоскости с делительным цилиндром называется осевым шагам Р . Ход и осевой шаг зуба связаны зависимостью Р = Р г,.  [c.146]

Скольжение в червячном зацеплении. Витки червяка скользят при движении по зубьям колеса. Когда точка контакта совпадает с полюсом зацепления, относительная скорость Сск направлена по касательной к винтовой линии витка червяка (рис. 21.5). В этом положении окружная скорость червяка i = (ui /)/2 и окружная скорость колеса V2 = U2I/2/2 связаны со скоростью скольжения соотношениями  [c.377]

В зацеплении Новикова первоначальный контакт зубьев происходит в точке, и зубья касаются только в момент прохождения профилей через эту точку, а непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому зацепление Новикова может быть только косозубым. Практически угол наклона зубьев р=10...22°. Положение точки контакта зубьев характеризуется ее смещением от полюса, а линия зацепления пп расположена параллельно осям колес. При приложении нагрузки в результате упругой деформации точечный контакт переходит в контакт по малой площадке (рис. 9.41), которая, перемещаясь (показано стрелкой А) вдоль зубьев (а не по профилю зубьев, как в эвольвентной передаче), постепенно возрастает, достигая максимального значения на среднем участке ширины колес. Это повьпиает не только нагрузочную способность передачи по контактным напряжениям, но и создает благоприятные условия для образования устойчивого  [c.219]

Особенности зацепления. С целью повышения несущей способности зубчатых передач М. Л. Новиковым в 1955 г. было предложено повое выпукло-вогнутое круго-винтовое зацепление (рис. 3.50). В этом зацеплении зубья колес могут иметь выпуклую, вогнутую либо выпукло-вогнутую форму. Теоретически эти зубья контактируют в одной точке на линии зацепления (рис. 3.51, а). В торцовом сечении профили зубьев не сопряженные. Поэтому для обеспечения постоянного передаточного отношения передача может быть только косозубой. Профили зубьев очерчены дугами окружностей, радиусы которых отличаются друг от друга на 7—15%. Благодаря этому при контакте выпуклого с вогнутым профилем зубьев нагрузка распределяется по большой поверхности, напряжения на площадке контакта будут меньше, чем в эвольвентом зацеплении и передаваемую нагрузку можно увеличить.  [c.272]

В положении, когда точка контакта совпадает с полюсом зацепления, относительная скорость Уск направлена по касательной к винтовой линии витка червяка. Окружные скорости червяка (01 1/2 и колеса в этом положении связаны с проек-  [c.299]

Внешнее эвольвентное зацепление, несмотря на ряд достоинств (простота изготовления, нечувствительность к изменению межосевого расстояния и др.), имеет существенный для тяжело нагруженных передач недостаток, заключающийся в том, что зубья касаются выпуклыми поверхностями. Для уменьшения контактных напряжений надо, чтобы выпуклая поверхность одного зуба касалась вогнутой поверхности другого зуба. Такое касание имеют эвольвентные зубья при внутреннем зацеплении и зубья, профили которых очерчены по гипоциклоиде и эпициклоиде (циклоидное зацепление). Еще более благоприятный контакт получается у зубьев, профили которых по предложению М. Л. Новикова в торцовой плоскости очерчены по дугам окружностей с почти равными радиусами (рис. 156). В цилиндрической передаче эти зубья делаются винтовыми, и потому полученное зацепление называют иногда круговинтовым. Рассматриваемое зацепление — точечное, и в каждой торцовой плоскости зубья касаются только в одной точке К. Непрерывность зацепления обеспечивается тем, что зубья выполнены винтовыми. Поверхности зубьев рассматриваемого зацепления должны быть образованы так, чтобы точка контакта К перемещалась параллельно осям вращения колес.  [c.445]


Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном цилиндре, называют к о с о з у-быми (см. рис. 8.1, б). В отличие от прямозубой в косозубой передаче зубья входят в зацепление не сразу по всей длине, а постепенно. Увеличивается время контакта одной пары зубьев, в течение которого входят новые пары зубьев, нагрузка передается по большому числу контактных линий, что значительно снижает шум и динамические нагрузки.  [c.149]

Механизмы с числом пассивных связей к больше V. Этот случай практически осуществляется, когда в механизме имеются кинематические пары с числом степеней свободы меньшим, чем это требуется из условия наложения на механизмы общих связей. Однако применение таких пар становится возможным лишь из-за специфики устройства самого механизма. Под спецификой устройства в данном случае понимается, например, выбор определенных соотношений между размерами звеньев при использовании вращательных пар — специальное расположение их осей в пространстве для высших пар типа фрикционных дисков — специальное очертание дисков, например, по концентрическим окружностям, по эллиптическим или овальным кривым, со специальным подсчетом параметров и т. д. Для высших пар типа зубчатых зацеплений под спецификой подразумевается специальное нарезание боковых поверхностей зубьев. Например, в винтовых колесах боковые поверхности зубьев имеют между собой точечный контакт, обеспечивающий 5 степеней свободы в относительном движении, а в червячной передаче благодаря специфике нарезания (см. гл. XVII, стр. 501), пара, образованная боковыми поверхностями зубьев колеса и ниток червяка, будет парой  [c.60]

Получающаяся при этом некторая несопряженность профилей в зацеплении Новикова не нарушает правильности зацепления в силу следующих обстоятельств. Благодаря очень тесному соприкосновению профилей это зацепление нельзя запроектировать так, чтобы точка А в процессе зацепления приближалась или удалялась от полюса зацепления, двигаясь по линии зацепления, в плоскости чертежа как в обычных зацеплениях, так как это вызвало бы сильную интерференцию или подрезание профилей (см. п. 59). Поэтому в лучшем случае здесь можно потребовать, чтобы в точке А профили только встречались бы для мгновенного контакта, а потом расходились, т. е. передача движения происходила бы не за счет процесса з а -цепления, а, так сказать, за счет набегания профилей. Если это выполнить, то для обеспечения мгновенного безударного контакта совершенно достаточно будет, чтобы профили удовлетворяли только 1-й теореме зацепления (т. е. имели бы в контактной точке нормаль, проходящую через заданный полюс зацепления) и не обязательно удовлетворяли бы другой теореме зацепления (теореме о кривизне профилей) или, как говорят, не были бы сопряженными в точке. Но тогда возникает новый вопрос если профили в зацеплении Новикова в точке касания имеют лишь мгновенный контакт, т. е. только встречаются в ней и сейчас же расходятся, то за счет чего обеспечивается в этом зацеплении непрерывность процесса передачи вращения Это осуществляется здесь за счет применения на колесах не прямых зубьев, а винтовых (см. п. 60). Благодаря наличию винтовых зубьев, профили, встречаясь и расходясь в одном сечении, будут вновь встречаться и расходиться в каждом из последующих сечений по ширине колес в итоге процесс зацепления будет происходить непрерывно. Такое зацепление принято называть точечным — в каждый данный момент в зацеплении находится только одна точка боковой поверхности зуба. Геометрическое место контактных точек в зацеплении Новикова представляет прямую линию, параллельную осям колес эта линия и носит название линии зацепления, так же как и в других зацеплениях, в которых контактные точки перемещаются в торцевых сечениях (в сечениях, параллельных плоскости чертежа).  [c.403]

Исследование червячных передач с выпукло-вогнутыми контактными поверхностями. Нагрузочная способность и к. п. д. червячной передачи в значительной мере зависят от характера касания сопряженных поверхностей витков червяка и зубьев колеса. В последнее время получают распространение передачи нового вида, в которых вогнутая винтовая поверхность червяка касается выпуклой поверхности зубьев колеса. Расположение линий контакта этих поверхностей червячг10й пары благоприятствует образованию масляной пленки между пими. В результате этого червячные передачи с новым видом зацепления обладают более высокой нагрузочной способностью и большим к. п. д., чем архимедовы или эвольвентные передачи.  [c.66]

Первоначальное (при отсутствии сжимающей силы) касание тел по криволинейным поверхностям бывает линейное и точечное. Линейный контакт бывает в эвольвентном зацеплении прямозубых и косозубых цилиндрических колец, в червячном зацеплении, в ходовых колесах и катках с цилиндрической поверхностью катания и рельсах с плоской головкой, в кулачках и толкателях, в роликах и кольцах цилиндрических и конических роликоподшипников и др. Точечный контакт — в ходовых колесах с цилиндрической и конусной поверхностями обода, в рельсах с круговой поверхностью головки, в винтовых зубчатых колесах, в винтокруговых передачах системы Новикова, в шарикоподшипниках и т. п.  [c.237]


Смотреть страницы где упоминается термин Зацепление винтовое контактом : [c.166]    [c.258]    [c.202]   
Теория механизмов и машин (1989) -- [ c.0 ]



ПОИСК



Зацепление винтовое

Контакты



© 2025 Mash-xxl.info Реклама на сайте