Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вогнутость поверхности

Рассмотрим построение касательных плоскостей к вогнутым поверхностям вращения.  [c.278]

На рис. 5.18 показаны конструкции червячных колес, центры которых получены обработкой резанием. Вогнутую поверхность центра (рис. 5.18, а, о) получают обработкой на токарном станке. Различие между этими двумя вариантами в форме поперечных пазов, которые получают радиальной подачей фрезы а — дисковой (ось вращения фрезы перпендикулярна оси вращения колеса) б — цилиндрической (ось вращения фрезы параллельна оси вращения колеса). Размеры пазов  [c.53]


На рис. 5.18 показаны конструкции червячных колес, центры которых получены обработкой резанием. Вогнутую поверхность центра (рис. 5. %, а, б) получают обработкой на токарном станке. Различие между этими двумя вариантами в форме поперечных пазов, которые получают радиальной подачей фрезы а — дисковой (ось вращения фрезы перпендикулярна оси вращения колеса) б — цилиндрической (ось вращения фрезы параллельна оси вращения колеса). Размеры пазов Ь а (0,3...0,5)Й2 а = (0,3...0,4)й. По технологичности и трудоемкости оба варианта равноценны. По рис. 5.18, в углубления на ободе центра высверливают.  [c.74]

Сферические выпуклые и вогнутые поверхности можно обрабатывать также при помощи штанг или планок, заменяющих собой копиры. На рис. 143 показано обтачивание сферической головки клапана путем шарнирного соединения суппорта с неподвижной осью 1 и осью 3 при помощи штанги 2, длина которой соответствует радиусу сферы  [c.280]

На рис. 150, б показано строгание вогнутой поверхности на детали 1 при помощи копира 4, закрепленного на кронштейне 3 приспособления 2, установленного на столе продольно-строгального станка.  [c.285]

На рис. 152, в показано шлифование вогнутой поверхности при помощи копира А, который перемещает деталь в поперечном направлении при продольной подаче стола.  [c.287]

Критерии работоспособности и расчета. Без учета деформаций и приработки контакт зубьев в передаче Новикова осуществляется в точке, а не по линии, как у эвольвентных передач. Однако малая разность радиусов кривизны ri и Га выпуклых и вогнутых поверхностей зубьев, а также большие радиусы кривизны pi и ра косых зубьев в плоскости п—п (см. рис. 8.51) приводят к тому, что под нагрузкой  [c.167]

Коэффициент линейного расширения покрытия в 14 раз выше коэффициента линейного расширения металла. При покрытии полиэтиленом выпуклых поверхностей металлов разница в коэффициенте линейного расширения приводит к повышению адгезии при покрытии полиэтиленом вогнутых поверхностей возникают напряжения, направленные на отрыв покрытий, поэтому полиэтилен наносят на прослойки полиэтилена с наполнителями или же на эластичные грунтовочные лакокрасочные покрытия.  [c.423]

Из теоретической механики известно, что равновесие абсолютно твердого тела может быть устойчивым, безразличным и неустойчивым. Например, шар, лежаш,ий на вогнутой поверхности, находится в состоянии устойчивого равновесия. Если ему сообщить небольшое отклонение от этого положения и отпустить, то он снова возвратится в свое исходное положение (рис. Х.1,а). Шар, лежащий на горизонтальной поверхности, находится в состоянии безразличного равновесия (рис. Х.1,б).  [c.264]


Несущая способность червячных передач с вогнутыми поверхностями витков червяка существенно выше, чем передач о цилиндрическими червяками других видов установившихся расчетных норм для этого вида передач еще нет. В качестве первого приближения несущую способность (по условию прочности рабочих поверхностей зубьев колеса) этих передач можно принять на 30—40% выше, чем передач с конволютным или эвольвентным червяком.  [c.657]

Колесо нарезается со смещением н без смещения. Смещением хт производящего колеса, определяемым коэффициентом смещения х и модулем т, называется расстояние по межосевой линии между целительными поверхностями производящего червяка и обрабаты- >аемого червячного колеса при окончании нарезания. Если указанные делительные поверхности соприкасаются, то червячное колесо получается без смещения. Колесо выполняется глобоидной формы, с вогнутой поверхностью вершин зубьев, обр з ванной вращением вокруг его оси дуги окружности, лежащей в средней плоскости парного червяка.  [c.150]

Рассмотреть случай преломления на вогнутой поверхности, при котором изображение получается мнимым (выполнить построение и вывести формулу).  [c.882]

Скорость сварки следует подставлять в му ч. Если /gg < 1 р, получается шов с вогнутой поверхностью, при /св = кр — плоской поверхностью, а при /, т клой поверхностью нении угловых швов необходимо стремиться к формированию швов с вогнутой и плоской поверхностью.  [c.50]

Радиус кривизны считается положительным при вогнутой поверхности более плотной фазы и отрицательным при выпуклой поверхности ее.  [c.147]

На основе опытных исследований можно считать, что на выпуклых поверхностях при b /R < 0,0026 (R — радиус кривизны поверхности) возникает неустойчивость такого же типа, как и на пластине, а влиянием кривизны можно пренебречь. На вогнутой поверхности пограничный слой ведет себя так же, как и на пластине при 8 /R < 0,00013. При больших значениях относительной толщины вытеснения пограничный слой становится неустойчивым.  [c.363]

Заметим, что результирующая поверхностных сил для выпуклой поверхности (рис. 1.12) направлена внутрь жидкости, а для вогнутой поверхности — наоборот и что форма мениска в манометрической трубке будет зависеть от взаимодействия жидкости с трубкой. Если жидкость будет смачивающая (вода в стеклянной трубке), то мениск будет вогнутый и, следовательно, результирующая поверхностных сил будет направлена наружу. При несмачивающей жидкости (ртуть в стеклянной трубке) мениск будет выпуклым и результирующая сила направлена внутрь жидкости.  [c.35]

Условие (1) означает, что как выпуклая, так и вогнутая поверхности бруса свободны от нормальных усилий. Условие (2) ука-  [c.88]

В процессе кипения жидкость испаряется в паровые пузыри, т. е. с вогнутой поверхности раздела фаз. При равновесной температуре насыщения давление пара над вогнутой поверхностью раздела фаз меньше, чем над плоской, на величину  [c.334]

Чтобы поднять давление пара над вогнутой поверхностью до его давления при испарении с плоской границы раздела фаз, необходимо увеличить кинетическую энергию молекул жидкости, повысив ее температуру на некоторую величину А Т.  [c.334]

Радиус кривизны считается положительным при вогнутой поверхности более плотной фазы и отрицательным при выпуклой поверхности ее. Выражение (3.35) называется формулой Лапласа.  [c.227]

Явление перегрева кипящей жидкости имеет следующее объяснение. Внутри образовавшегося в жидкости парового пузырька давление насыщенного пара вследствие действия сил поверхностного натяжения на вогнутой поверхности жидкости меньше давления насыщенного пара над плоской поверхностью при той же температуре. Наоборот,  [c.374]

Метод отпечатков применяется и для определения величины износа цилиндрических поверхностей. При этом пользуются формулами для вогнутой поверхности  [c.202]

Гиперболические точки имеют мног ие поверхности линейчатые неразвертываю-щиеся (косые) поверхности, вогнутые поверхности вращения, винтовые поверхности и др.  [c.276]


Капиллярная конденсация влаги обусловлена тем, что упругость паров над поверхностью жидкости зависит от кривизны мениска. Если сравнить давление насыщенных паров над плос кой, выпуклой и вогнутой поверхпостя.ми воды, то оказывается, что наибольшим оно будет над выпуклой поверхностью, а наименьшим — над вогнутой поверхностью. В случае вогнутого мениска упругость насыщенного водяного пара над ним значительно отличается от упругости паров во,ды над плоской поверхностью. Так, на воздухе при 15 С и давлении 0,1 Мн м упругость-насыщенного пара над плоской поверхностью равна 1,7 кн м и конденсация происходит при 100%-иой относительной влажности на,д мениском с радиусом кривизны 1,2- 10 мм упругость, паров воды уменьшается до 667 и конденсации паров воды происходит при 397о-ной относительной влажности.  [c.174]

Благоприятнее распределение сил у профилей с вогнутыми поверхностями. Крестообразные соединения подобного типа - трефные соединения (рис. 311) до сих пор применяют в валах прокатных станов. Представляя собой по существу крупные шлицы трап .-иеидального профиля, они по прочности на изгиб и смятие равноценны последним. Однако в отличие от шлицевых соединений у них очень сильно ослаблено сопротивление кручению по сердцевине профиля.  [c.284]

Несущая способность таких подшипников определяется величипоз контактного напряжения по Герцу, которое зависит от формы соприкасающихся поверхностей. Наиболее высокие напряжения возникают при контакте двух сфер, меньшие — при контакте плоской поверхности со сферой II наиболее низкие — при контакте сферы со сферической вогнутой поверхностью радиусом, равным 1,01 — 1,02 К сферы. Во всех случаях напряжения уменьшаются с увеличением диаметра сфер.  [c.421]

При создании современных турбин ГТД различного назначения с высокими начальными параметрами, большими неравномерностями полей температуры, скорости, плотности в потоке газа важной является проблема снижения термических напряжений в пере лопатки путем уменьшения неравномерности температуры. Уже при начальной температуре газа Г = 1500 К минимальное значение местного коэффициента запаса прочности может достигнуть своего допустимого значения в самой холодной точке поперечного сечения пера. Наиболее горячие части лопатки — кромки, а наиболее холодные — средние части выпуклой и вогнутой поверхностей с минимумом температуры nmin перемычке между охлаждающими каналами. Традиционный метод уменьшения температурной неравномерности заключается в снижении температуры кромок двумя основными способами интенсификацией теплообмена в кромочных каналах турбулизаторами течения (ребрами, лунками, закруткой, струйным натеканием на стенку, пульсирующей подачей охладителя и т. п.) или понижением температуры воздуха, охлаждающего кромки, путем спутной закрутки или в теплообменнике. Эффективным может быть выдув охладителя на поверхность пера. Однако в авиадвигателях выдув может затруднять отключение охладителя на крейсерских режимах полета самолета. В ГГУ, работающих на тяжелых сортах топлива, происходит отложение твердых частиц на перфорирюванной поверхности, что приводит к  [c.366]

Из анализа формулы (15.9) видно, что, как и в балке с прямой осью, нормальное напряжение по ширине сечения одинаковое (не зависит от г) и изменяется только с изменением расстояния точки от нейтральной линии. По высоте сечения напряжения в кривом брусе изменяются по гиперболическому закону (рис. 442, б). Наибольигье по абсолютной величине напряжения будут в крайних точках сечения, находящихся у вогнутой поверхности бруса.  [c.435]

Поверхность, все точки которой являн тся гиперболическими, имеет форму седла (косая плоскость, однополостный гиперболоид, вогнутые поверхности вращения и др.).  [c.143]

Отражательные решетки несравненно более высокого качества были впервые получены в 80-х годах XIX в. американским физиком Роулендом, наносившим штрихи на металлическую плоскую или вогнутую поверхность с помощью винтовой делительной машины. Решетки, изготовленные на машинах Роуленда, в усовершенствовании которых принимали участие Вуд и другие крупные физики, оставгипись лучшими в мире вплоть до 50-х годов нашего столетия. В настоящее время усилиями Ф. М. Герасимова и его сотрудников налажен массовый выпуск превосходных дифракционных решеток и разработаны оригинальные методы их исследования. При характеристике свойств современных решеток мы воспользуемся некоторыми результатами этих исследований.  [c.298]

Что касается области существования простой волны при обтекании вогнутого профиля, то вдоль линий тока, проходящих над точкой О, оно применимо вплоть до места пересечения этих линий с ударной волной. Липин же тока, пролодящие под точкой О, с ударной волной вообще не пересекаются. Однако отсюда нельзя сделать заключение о том, что вдоль них рассматриваемое решение применимо везде. Дело в том, что возникающая ударная волна оказывает возмущающее влияние и на газ, текущий вдоль этих линий тока, и таким образом нарушает движение, которое должно было бы иметь место в ее отсутствии. В силу свойства сверхзвукового потока эти возмущенггя будут, однако, проникать лишь в область газа, находящуюся вниз по течению от характеристики ОА, исходящей из точки начала ударной волны (одна из характеристик второго семейства). Таким образом, рассматриваемое здесь решение будет применимым во всей области слева от линии АОВ. Что касается самой линии ОА, то она будет представлять собой слабый разрыв. Мы видим, что непрерывная (без ударных волн) во всей области простая волна сжатия вдоль вогнутой поверхности, аналогичная простой волне разрежения вдоль выпуклой поверхности, невозможна.  [c.606]


Вылет молекул из жидкости при сильно вогнутой поверхности сопряжен с преодолением дополнительного по сравнениюсо случаем плоской поверхности притяжения молекул, находящихся в густо заштрихованной области (рис. 8.5, радиус круга равняется радиусу действия молекулярных сил).  [c.223]

Л — ДНО сосуда б — вертикальную стенку а —наклонную стенку г — вертикальную стенку с двух сторон б--выпуклую криволинеАиую поверхность а — вогнутую поверхность  [c.20]

Механическим аналогом устойчивого равновесия является шарик, тюкоящийся в низшей точке вогнутой поверхности.  [c.15]

Рассчитать распределение локальных значений коэффициентов теплоотдачи и плотности теплового потока на выпуклой и вогнутой поверхности лопатки газовой j турбины в предположении, что турбулентный погранич- в ный слой развивается от пе- /Г редней кромки лопатки. Рас- 13 четная схема лопатки представлена на рис. 16.1. Рабо- Рис. 16.1 чее тело — воздух. Параметры  [c.247]

Найти распределение относительного удельного расхода воздуха/" =РстК ст/(Роо < ) вдоль вогнутой поверхности лопатки газовой турбины, необходимое для поддержания постоянной температуры этой поверхности Т т. = 873 К,. Охлаждающий воздух поступает из компрессора во внутреннюю полость лопатки при температуре 473 К. Параметры течения воздуха на внешней границе пограничного слоя и размеры лопатки взять из задачи 16.18.  [c.250]


Смотреть страницы где упоминается термин Вогнутость поверхности : [c.161]    [c.287]    [c.288]    [c.57]    [c.53]    [c.341]    [c.368]    [c.150]    [c.99]    [c.883]    [c.462]    [c.104]   
Справочник технолога-машиностроителя Том 2 Издание 4 (1986) -- [ c.446 ]



ПОИСК



Вогнутость



© 2025 Mash-xxl.info Реклама на сайте