Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения свободного движения твердого тел

Свободное движение тела в 5 . Рассмотрим сначала уравнения свободного движения твердого тела на трехмерной сфере 6 . Заметим, что положение двумерного тела (пластинки) на поверхности обычной двумерной сферы может быть охарактеризовано с помощью элемента группы б О(З), который определяет положение тела на сфере и его ориентацию по отношению к неподвижным осям (рис. 80).  [c.275]


Свободное движение твердого тела. Одной из задач, к которой можно применить уравнения Эйлера, является задача о движении твердого тела, не подверженного действию никаких сил. Центр масс такого тела будет находиться в покое или будет двигаться равномерно. Поэтому, не нарушая общности решения, мы можем рассмотреть движение этого тела в системе, связанной с его центром масс. Тогда центр масс этого тела будет неподвижен, и поэтому кинетический момент будет возникать только вследствие вращения вокруг центра масс. Поэтому уравнения Эйлера будут уравнениями движения этой системы, а так как мы рассматриваем случай, когда моменты сил отсутствуют, то эти уравнения примут вид  [c.180]

С помощью этого равенства и уравнений (5.50) и (5.51) функции ф(0 и г )(<) также можно получить посредством квадратур. Однако полином, стоящий под корнем интеграла (5.56), является кубическим, и, следовательно, этот интеграл может быть выражен только через эллиптические функции. Подробное исследование получающихся таким путем решений можно найти в ряде книг ), однако, как и в случае свободного движения твердого тела, здесь физическая сторона явления часто в значительной степени затемняется вследствие большого количества  [c.188]

Тем самым мы получили векторную форму дифференциальных уравнений Эйлера для случая отсутствия внешних сил (свободного движения твердого тела).  [c.186]

Свободное тело случай осевой симметрии. Одной из классических задач динамики твердого тела является задача о свободном движении твердого тела, т. е. о движении тела при отсутствии сил. Центр тяжести в этом случае движется прямолинейно и равномерно, а вращение тела описывается уравнениями  [c.234]

Ориентация свободного тела. Свободное движение твердого тела описывается уравнениями (13.11.1), и из этих уравнений мы определили  [c.238]

Уравнения (3.35), (3.37) являются основными уравнениями динамики движения твердого тела. Одно из этих уравнений описывает движение центра масс тела, другое — вращение тела около центра моментов (вернее, около оси, проходящей через этот центр). Если центр моментов выбрать совпадающим с центром масс тела и в качестве осей координат взять свободные  [c.253]


Так же получим два других аналогичных уравнения. Таким образом полученные уравнения тождественны по форме с уравнениями Эйлера для свободного движения твердого тела около неподвижной точки.  [c.258]

Жуковский, Николай Егорович (17.1.1847-17.3.1921) — русский механик, математик, инженер, по выражению В. И. Ленина — отец русской авиации . В своей магистерской диссертации (1885 г.) заложил основы теории движения твердого тела с полостями, полностью заполненными идеальной несжимаемой жидкостью. Для многосвязных полостей отметил эквивалентность полученной формы уравнений с движением твердого тела с маховиком — гиростатом, ввел соответствующие динамические характеристики и провел их вычисления для полостей различной формы. Указал случай интегрируемости свободного гиростата, явное решение для которого было получено В. Вольтерра при помощи эллиптических функций (1899).  [c.22]

Твердое тело в в жидкости. Если рассматривать свободное движение твердого тела в искривленном пространстве (трехмерная сфера) в однородной несжимаемой идеальной жидкости (аналог уравнений Кирхгофа (1.1) на е(3)), то гамильтониан имеет более общую форму по сравнению с (2.11)  [c.185]

Движение свободного твердого тела. Общим приемом составления уравнений движения свободного твердого тела является совокупное применение теоремы о движении центра инерции и динамических уравнений Эйлера, выражающих теорему об изменении главного момента количеств движения твердого тела в относительном движении по отношению к центру инерции.  [c.543]

Влияние гироскопических сил на свободные колебания твердого тела с четырьмя степенями свободы. Для составления дифференциальных уравнений малых колебаний твердого тела при наличии гироскопических сил следует применять теорему о движении центра инерции системы материальных точек вместе с теоремой об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции.  [c.624]

Интегрируя полученную систему дифференциальных уравнений движения твердого тела, находим частоты свободных колебаний, главные колебания ротора и общее решение задачи.  [c.625]

Уравнения (44.12) и (44.14), полученные из принципа Лагранжа— Даламбера, необходимы и достаточны для описания движения свободного абсолютно твердого тела.  [c.64]

Движение твердого тела во многом зависит от числа его степеней свободы тело с одним и тем же числом степеней свободы может совершать различные движения, не похожие друг на друга. Свободное твердое тело в общем случае имеет шесть степеней свободы. Действительно, положение тела в пространстве относительно какой-либо системы координат, например декартовой, определяется заданием трех его точек, не лежащих на одной прямой. Расстояния между точками в твердом теле должны оставаться неизменными при любых его движениях. Это накладывает на координаты фиксированных точек три условия. Девять координат должны удовлетворять трем уравнениям.  [c.123]

Уравнения движения свободного твердого тела в общем случае его движения. Рассмотрев частные случаи движения твердого тела, перейдем к изучению самого общего случая движения свободного твердого тела, т. е. такого тела, которое может совершать любое перемещение в пространстве. Пусть данное свободное твердое тело каким-то  [c.394]

Таким образом, движение совершенно свободного твердого тела разложено на движение центра маос (уравнения (6.10)) и на движение вокруг центра масс как движение вокруг неподвижной точки (уравнения (6.11)). Оба эти движения были изучены ранее — в динамике точки и в движении твердого тела вокруг неподвижной точки.  [c.208]


Рассмотрим свободное падение твердого тела в неограниченном объеме покоящейся жидкости (рис. 72). Опущенное в жидкость тело начнет двигаться с ускорением Уравнение движения  [c.121]

Сперва рассмотрим тело, свободно движущееся в пространстве. Поместим начало отсчета в центр тяжести тела и приведем к нему приложенные к телу силы согласно указанию, сделанному в 23. Тогда вся система сил, действующих на тело, сведется к равнодействующей силе Гик результирующему (главному) моменту М. Согласно 13, уравнения движения твердого тела примут форму закона движения центра тяжести и закона площадей  [c.178]

Эти знаменитые уравнения описывают изменение со временем положения мгновенной угловой скорости вращения П относительно системы координат, связанной с телом. Они решают лишь часть динамической задачи о свободном вращении твердого тела и должны быть дополнены описанием движения системы координат, связанной с телом относительно системы неподвижных осей. Эта задача, как и ряд других задач динамики твердого тела, выходит за рамки данной книги, посвященной основным принципам механики и обращающейся к приложениям лишь для иллюстрации применения этих основных принципов. Для дальнейшего изучения этой темы читатель отсылается к учебникам, указанным в библиографии.  [c.130]

Живая сила движущегося твердого тела. Моменты инерции. Главные оси. Дифференциальные уравнения движения твердого тела для случая, когда оно свободно, и для случая, когда одна его точка закреплена)  [c.48]

Система подвергается действию обобщенных сил X,, удовлетворяющих равенству (1.2) для всех перемещений, соответствующих изменению одних лишь координат, при фиксированном времени t. Уравнения движения сохраняют форму (1.3). Простым примером р. г. системы может служить свободное вращение твердого тела вокруг точки, движущейся по заданному закону.  [c.12]

В отличие от общепринятых уравнений движения свободного твердого тела с углами Эйлера уравнения (1) описывают движение твердого тела только в линейных величинах (без угловых), что может быть использовано при разработке методов и средств исследования ПР.  [c.79]

Свободное твердое тело имеет шесть степеней свободы. Его движение описывается шестью уравнениями динамики, в качестве которых можно Взять, например, векторное уравнение (9), выражающее теорему об изменении количества движения, и векторное уравнение (10), выражающее теорему об изменении главного момента количества движения твердого тела. Поскольку уравнение (9) определяет закон движения центра масс тела, то в качестве второго векторного уравнения целесообразно взять уравнение (22), описывающее изменение главного момента количества движения относительно центра масс. В связи с этим в динамике твердого тела особое значение приобретают центр масс и распределение массы тела относительно этого центра.  [c.40]

Это уравнение полностью определяет движение свободного вращающегося твердого тела, закрепленного в точке центра масс. Вектор N постоянен и неподвижен в пространстве, уно изменяет свое направление относительно вращающегося тела, отсюда можно определить движение тела. Конечно, так будет, за исключением того положения, при котором а> и N совпадают, тогда = 0 и тело вращается, сохраняя неизменной ось вращения о в пространстве и теле.  [c.251]

Описывая движение любых механических систем, уравнения (2.2.1) и (2.2.2) в общем случае являются необходимыми, но недостаточными. Для свободного абсолютно твердого тела эти уравнения движения являются необходимыми и достаточными.  [c.60]

В главе I подробно исследованы уравнения свободного вращения твердого тела около неподвижной точки, В результате проведенного качественного анализа такого движения получены аналитические зависимости пределов нутации оси собственного вращения от начальных усювий. Выявлена аналитическая природа движений. Глава 1 дает обоснования для использования тех или иных предположений о характере движения, которые сделаны в последующих главах.  [c.2]

Первые три из уравнений движения (48) определяют движение точки О и вместе с тем поступательное движение свободного твердого тела. Последние три уравнения определяют движение твердого тела относительно системы OxiyiZi (т, е. движение тела относительно точки О, как неподвижной).  [c.141]

Новиков С. П., Шмельцер И. Периодические решения уравнения Кирхгофа свободного движения твердого тела и идеальной жидкости и расширенная теория Люстерника-Шнйрельмана-Морса (ЛМШ) I // Функцион. анализ и его прил. —  [c.334]

Рассмотрим наиболее общий случай движения твердого тела, когда оно является свободным и может перемещаться как угодно по отношению к системе отсчета ОххУ г (рис. 180). Установим вид уравнений, определяющих закон рассматриваемого движения. Выберем произвольную точку А тела в качестве полюса и проведем через нее оси Ax iy[z i, которые при движении тела будут перемещаться вместе с полюсом поступательно. Тогда положение тела в системе отсчета Ох Угг будет известно, если будем знать положение полюса Л, т. е. его координаты Xia Ууа, ia, и положение тела по отношению к осям Ax[y iZ[, определяемое, как и в случае, рассмотренном в 60, углами Эйлера ф, i 3, 0 (см. рис. 172 на рис. 180 углы Эйлера не показаны,чтобы не затемнять чертеж). Следовательно, уравнения движения свободного твердого тела, позволяющие найти его положение по отношению к системе отсчета ОххУ г в любой момент времени, имеют вид  [c.153]


Наиболее простым случаем движения свободного твердого тела является случай его равновесид. Обращаем внимание иа то, что из уравнений движения твердого тела (III. 1) и (III. 4) можно снова вывести уравнения равновесия, рассмотренные в 166 первого тома ).  [c.402]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

Общий метод решения задачи о движении твердого тела. Уравнения Эйлера. Весь аппарат, необходимый для решения задачи о движении твердого тела, нами практически уже получен. В некоторых случаях, когда на это тело наложены не-голономные связи, нам потребуется применить специальные приемы, чтобы учесть их. Так обстоит дело, например, в том случае, когда на тело наложена связь качения , которая может быть учтена с помощью введения неопределенных множителей Лагранжа, как это делается в 2.4. Если, однако, исключить эти специальные случаи, то, как правило, нам придется иметь дело только с голономными и консервативными системами, а движение таких систем вполне определяется их лагранжианом. Если рассматриваемое тело является свободным, то нам потребуется полная система из щести обобщенных координат TpeJ<  [c.177]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

После введения углов Эйлера выводятся два уравнения движения твердого тела одно —описывающее его поступательное движение, другое — его вращательное движение. Получено выражение для кинетической энергии твердого тела, записанное через его моменты инерции и угловые скорости, отнесенные к главным осям тела. Выведены уравиенпя Эйлера и прилагаются к рассмотре-н по твердых тел, на которые не действуют внешние силы, и к рассмотрению тяжелого симметричного волчка. Обсуждается прецессия и нутация земной оси, обусловленная солнечными и лунными силами тяготения. В последнем параграфе рассматриваются силы Кориолиса и их влияние на свободное падение тел и движение сферического маятника (маятник Фуко).  [c.98]

ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ. ДВИЖЕНИЕ СВОБОДНОГО ТВЕРДОГО ТЕЛА В ОБЩЕМ СЛУЧАЕ 84. Уравнення двнжения твердого тела, имеющего одну неподвижную точку  [c.330]

Движение твердого тела вокруг неподвижной точки и движение свободного твердого тела. Для составления дифференциальных уравнений движения тела, имеющего неподвижную точку, необходимо найги выражения главного момента количеств движения Kq (кинетического момента) и кинетической энергии Т тела в этом случае движения.  [c.407]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

Первые интегралы уравнений движения. Исследуем более сложный случай движения твердого тела около неподвижной точки, когда эллипсоид инерции тела относительно этой точки имеет неравные оси (т. е. АФВФС), а сумма моментов действующих на тело внешних сил относительно точки опоры равняется нулю. Практически интересный пример такого движения будет иметь место, если произвольное тяжелое тело закрепить в его центре тяжести. Если произвольное массивное тело будет двигаться в свободном пространстве (т. е. в пространстве без действия внешних сил), то легко понять, что центр масс такого тела будет двигаться прямолинейно и равномерно, а движение около центра хмасс будет соответствовать формулированным выше условиям. Эта задача о движении твердого тела была впервые исследована Л. Эйлером в 1758 г. наглядную геометрическую картину этого движения на осно-  [c.443]


Смотреть страницы где упоминается термин Уравнения свободного движения твердого тел : [c.423]    [c.356]    [c.145]    [c.136]    [c.73]    [c.314]   
Курс теоретической механики Ч.1 (1977) -- [ c.287 ]



ПОИСК



Движение свободного твердого тела Поле реакций связей. Принцип ДАламбера—Лагранжа Уравнения движения

Движение свободного твердого тела. Уравнения движения

Движение свободное

Движение твердого свободного

Движение твердых тел

Дифференциальные уравнения движения свободного твердого тела

Лекция шестая (Живая сила движущегося твердого тела. Моменты инерции. Главные оси Дифференциальные уравнения движения твердого тела для случая, когда оно свободно, и для случая, когда одна его точка закреплена)

Отдел VI ДИНАМИКА ТВЁРДОГО ТЕЛА Уравнения движения свободного твёрдого тела

Различные типы уравнений движения свободного твёрдого тела

Разложение движения свободного твердого тела на поступательное движение вместе с полюсом н сферическое движение вокруг полюса Уравнения движения свободного твердого тела

УРАВНЕНИЯ движения твердых тел

Уравнении движения свободного твердого тела

Уравнения движения свободного твердого тела в общем случае Разложение движения твердого тела на поступательное движение и движение вокруг некоторой точки



© 2025 Mash-xxl.info Реклама на сайте