Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Описание роботов

Описанный робот перемещает детали диаметром 50—180 мм. Горизонтальный ход руки — 520 мм, вертикальный — 520 мм, поворот руки — до 90°, поворот захвата вокруг оси руки — 90°.  [c.332]

Проектирование РТК в основном включает в себя решение следующих задач 1) выбор компоновки РТК 2) подбор оборудования 3) расчет емкости межстаночных и межучастковых накопителей. Модели, точно описывающие эти задачи, невозможно свести к аналитическим зависимостям, так как основные составляющие этих моделей (время ожидания обслуживания роботом, суммарное время простоев станка и др.) могут быть получены лишь при многократном воспроизведении цикла обработки детали на РТК. Неопределенность аналитического описания параметров процесса работы РТК усугубляется еще и тем, что неизвестны иногда и конкретные детали, которые будут обрабатываться, неизвестно количество деталей в партии и количество запусков. Значительное влияние на проектные решения оказывает также надежность оборудования и инструмента, что в свою очередь не позволяет получить достоверные аналитические модели для расчета РТК.  [c.59]


В последнее десятилетие возрос интерес к теории пространственных механизмов и в том числе к их динамике, так как эти механизмы находят все большее применение, в частности, в задачах, связанных с внедрением роботов и манипуляторов, в задачах стыковки космических объектов. В этой области разработаны методы описания движения пространственных механизмов с несколькими степенями свободы, их силовой анализ, решены некоторые задачи уравновешивания и колебаний этих систем.  [c.16]

Достоинством описанных выше графоаналитических методов кинематического анализа является наглядность и простота. Однако при кинематическом исследовании пространственных механизмов аналитические методы становятся более удобными, чем графические, так как векторные равенства не могут быть представлены на плоскости, а мгновенные центры относительного движения звеньев должны быть заменены винтовыми осями. Поэтому для пространственных механизмов, за исключением некоторых простейших, больше подходит аппарат тензорного исчисления. Мы не сможем останавливаться здесь на этом подробнее. В качестве примера пространственной цепи на рис. 1.25 изображена кинематическая цепь ( рука ) современного манипулятора, или робота.  [c.30]

Описанные три типа АЛ связаны с использованием специальных средств автоматизации, но они могут быть выполнены с применением промышленных роботов. В табл. 17 приведена производительность АЛ разных типов.  [c.280]

Математическое описание элементов динамической системы промышленного робота (ПР) — один из основных этапов решения задачи анализа его динамики. Такое описание может быть получено двумя путями. Первый — составление описываюш ей объект системы дифференциальных уравнений. Это возможно, когда известны и с достаточно точными для практических целей упрощающими допущениями могут быть описаны физические процессы, происходящие в объекте. Полученное подобным, аналитическим путем математическое описание объекта исследования учитывает наиболее общие его конструктивные особенности и поэтому может быть распространено на целый класс аналогичных объектов. Вместе с тем в таком описании практически невозможно учесть локальные особенности конкретного объекта, что приводит к отличию реальных динамических характеристик от теоретических.  [c.61]

В результате изменяются характеристики на участке торможения и при подходе захвата к рабочему положению возникают значительные длительные колебания. Уровень этих колебаний уменьшается благодаря введению обратных связей и усложнению системы управления, учету собственных частот колебания руки при назначении режимов работы. При контурном управлении погрешности определяются как в плоскости (например, методом сечений с записью шариковой ручкой), так и в пространстве с использованием описанных выше линеек и датчиков. Учет погрешностей и деформаций шарнирных механизмов манипуляторов может выполняться расчетными [12] и экспериментально-расчетными методами. Такие методы разработаны в Институте механики АН СССР и Ленинградском политехническом институте. Большое значение имеет прогнозирование точностной (параметрической) надежности роботов. Здесь может быть применена методика, разработанная А. С. Прониковым и его учениками [25, 58].  [c.84]


Исследование проводилось с учетом методик, аналогичным изложенным в работах [5, 24, 75], при использовании описанной выше механической модели конструкции промышленного робота РПМ-25. Перемещение в вертикальной и горизонтальной плоскостях под действием статической переменной нагрузки на захвате измерялось для различных положений манипулятора, которые показаны на рис. 6.4. Вес груза F изменялся от О до 300 Н, Смещения схвата измерялись с помощью индикаторной головки с точностью до 0,01 мм. Различные варианты размещения индикатора также показаны на рис. 6.4.  [c.87]

Сборочные, упаковочные и расфасовочные линии получают все большее применение в условиях комплексной автоматизации. При массовой сборке небольших изделий для выполнения этих операций используются роторные линии, особенности диагностирования которых рассмотрены выше. В линиях с прямоточным движением деталей еще большее значение, чем в линиях других технологических назначений, имеет контроль механизмов прерывистого действия. Сборочные линии и линии, включающие расфасовку, консервацию и упаковку изделий, часто строятся на базе многопозиционных станков с поворотными столами, промышленных роботов и манипуляторов. Последние могут одновременно с перемещением изделий к месту сборки или расфасовки выполнять технологические операции распознавания путем взвешивания или технологические операции взвешивания и дозирования. Для этих устройств целесообразно применять тестовые методы диагностирования. Методы контроля других механизмов манипуляторов и роботов — те же, что и описанные в гл. 5 и 6.  [c.154]

Датчик для определения положения конца схвата робота имеет ту же структуру, что и описанное устройство определения координат транспортного робота. Отличие состоит в том, что если во втором датчике излучатель электрически не связан с блоком обработки, то в первом излучаемый импульс подается на схему б. Тогда  [c.187]

Проведенные экспериментальные исследования показали целесообразность применения разработанных датчиков, так как они обладают рядом преимуществ по сравнению с уже имеющимися устройствами, выполняющими аналогичные функции. Так, описанный ультразвуковой дальномер, устанавливаемый на подвижном роботе и предназначенный для построения картины внешнего мира, аппаратурно значительно проще, чем лазерный. Разработанный датчик положения поршней гидроцилиндров позволяет замкнуть цепь обратной связи в системе автоматического управления гидравлическим ПР.  [c.188]

Промышленные роботы с числовыми позиционными системами используют 1) в многопредметных поточных линиях с последовательным чередованием партий запуска деталей обычно детали одного наименования обрабатывают в течение двух смен и более штучное время операций не равно и не кратно такту выпуска, поэтому работа линии обеспечивается межоперационными и оборотными заделами очередность смены партий запуска деталей определяется потребностями производства и не регламентируется контроль проводят на большинстве рабочих мест 2) в многопредметных поточных линиях с последовательным чередованием партий запуска деталей от описанной в п. 1 этот вид линии отличается тем, что вся партия запуска деталей полностью обрабатывается на одном рабочем месте, а затем передается на другое рабочее место.  [c.511]

При маршрутно-операционном описании РТП маршрутная карта должна выполнять роль документа, в котором указывается адресная информация (номер цеха, участка, рабочего места, операция, перечень документов, применяемых для выполнения операции, технологическое оборудование, промышленный робот и инструменты).  [c.518]

Неотъемлемой частью роботов второго поколения является их программное обеспечение, реализующее описанные выше способы и алгоритмы управления. По мере совершенствования роботов и расширения класса решаемых ими задач относительная доля затрат на алгоритмическое и программное обеспечение системы автоматического управления неуклонно увеличивается. Это объясняется тем, что затраты на конструкционные компоненты роботов в известной мере стабилизировались. В то же время функциональные возможности роботов второго поколения определяются именно программным обеспечением и могут быть существенно расширены путем наращивания программ обработки сенсорной информации и адаптивного управления.  [c.22]


Для формализованного описания методов программного и адаптивного управления введем в рассмотрение обобщенную динамическую модель РТК- Эта модель включает систему уравнений динамики, описывающих управляемые движения роботов и оборудования, входящего в состав РТК, а также систему конструкционных ограничений и внешний условий. В общем случае систему уравнений динамики РТК можно записать в виде векторного дифференциального уравнения  [c.59]

Гибкие алгоритмы программирования, описанные в гл. 2, не только строят и оптимизируют программные движения, но и оперативно корректируют их на основании сигналов датчиков в зависимости от изменения условий эксплуатации робота. Сложнее дело обстоит при программировании роботов с помощью текстового описания требуемых операций на специализированно.м языке. В качестве такого языка используются либо универсальные языки высокого уровня с соответствующей их модификацией, либо новые языки, специально предназначенные для программирования ро ботов. Примерами таких языков могут служить языки AML, RPL и VAL [1001. Основные характеристики языков программирования роботов приведены в табл. 5.1.  [c.143]

Переходя к описанию адаптивной системы программного управления роботом, заметим, что описанные выше алгоритмы контурного и позиционного управления непрерывного типа непосредственно не применимы для управления шаговыми приводами. Поэтому прежде всего опишем дискретную модификацию алгоритмов адаптивного управления, учитывающую импульсный характер работы шаговых приводов.  [c.153]

Объединяя уравнения динамики электрических приводов (5.37) с уравнениями движения манипулятора (5.1), получим полное описание динамики электромеханического робота в следующем виде  [c.160]

Описанный приближенный метод расчета сервоприводов для промышленных роботов, несмотря на отсутствие строгого обоснования, на практике зачастую обеспечивает требуемую точность отработки ПД и приемлемое качество управления. Поэтому он используется при проектировании многих промышленных роботов с позиционными и контурными системами управления.  [c.161]

Описанный способ автоматического программирования движений позволяет существенно упростить и во много раз ускорить процесс обучения сварочных роботов. Благодаря этому резко увеличивается производительность и степень использования оборудования, уменьшается влияние субъективного человеческого фактора и увеличивается уровень автоматизации, что особенно важно в условиях гибкого многономенклатурного производства.  [c.172]

Указанные подсистемы активно взаимодействуют между собой, а также с двигательной и информационной системой робота. Алгоритмы функционирования всех элементов системы управления зависят от конструктивных особенностей транспортного робота, целей и условий его эксплуатации. Конкретизация этих алгоритмов, включая вопросы их программно-аппаратной реализации, дается ниже по мере описания различных образцов транспортных роботов с адаптивным и интеллектуальным управлением.  [c.189]

В некоторых интеллектуальных задачах факт выводимости заданной формулы В (трактуемой как задание или вопрос) из системы формул j/ljj Li (трактуемых как аксиоматическое описание знаний и накопленного опыта) оказывается недостаточным. Примером может служить задача планирования поведения робота. В подобного рода задачах нужно знать тот ответный терм т, при котором данная формула В (<а) логически выводима из системы аксиом Л ( ij) Li. Иными словами, нужно выяснить, следует ли логически формула 303 В (оз) из заданной системы аксиом и, если следует, то при каком значении переменной со = т это достигается.  [c.239]

Робототехнические СТЗ работают в двух режимах обучения и распознавания. В режиме обучения СТЗ предъявляет объекты разных классов (например, детали и инструмент) в характерных рабочих ракурсах. По этим данным автоматически строятся описания классов и решающие правила, которые хранятся в базе знаний. В режиме распознавания осуществляется (в зависимости от целевых условий) идентификация нужного объекта, классификация видимых объектов или анализ, описание и интерпретация рабочей обстановки. Полученная таким образом информация используется далее для адаптивного управления роботами и технологическим оборудованием ГАП.  [c.263]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]


Исполь ювапие пневмощупа возможно и в процессе сварки. Схема так> li корректировки показана на рис. 4.47, где траектория линии ггва 1, введенная в намять системы в процессе обучения, не совилдает с действительной линией соединения <3. В результате коррекции начального положения горелки она смещается из точки А в положение А. Аналогичным образом, с непрерывно горящей дугой, и с остановкой движения руки робота на 0,3 с, которые необходимы для выполнения описанных выше команд, период чески производится корректировка, при этом действительное движ>.,лие конца электрода соответствует ступенчатой линии 2.  [c.94]

На многорезцовом токарном автомате 20 растачивают центровое отверстие Со стороны опорной шейки Д и обтачивают опорные шейки Дц и Дз (см. рис. 54, б). Переходы аналогичны описанным для автомата НТ-217. Обработанный распределительный вал на спутнике транспортируется по конвейеру 23 (см. рис. 52) к позиции загрузки шлифовального автомата 27. В зоне конвейера 23 установлен переходной мостик 22. Промышленный робот 28 снимает вал-заготовку со спутника и загружает ее на автомат 27, а свободный спутник перемещается опускателем 24 на нижний уровень конвейера 23, движется к его началу, где поднимается подъемником 17 на верхний уровень и загружается очередным валом, обработанным на автомате 19.  [c.99]

Распределительный вал с центрами, подготовленными для окончательной обработки, на спутниках траиспорти-руется на операции шлифования опорных шеек и хвостовика. Загрузка автоматов, как и на описанных выше операциях, проводится промышленными роботами.  [c.104]

Невозможность получения точных значений физикомеханических и геометрических параметров применяемых упругих тел и изменение этих параметров в процессе эксплуатации механизмов не позволяют в ряде случаев получить стабильные кинематические характеристики упомянутых механизмов и обеспечить синхронность их движения, что снижает точность предварительных кинематических расчетов. Однако наряду с этими недостатками такие механизмы обладают и рядом преимуществ, главными из которых являются простота конструкции, значительное редуцирующее действие, отсутствие зазоров и люфтов при трогапии с места и реверсировании, легкость бесступенчатой регулировки передаточного отношения, возможность работы до жесткого упора. Эти преимущества в ряде случаев играют решающую роль (как, например, в описанных выше механизмах верньерных устройств, предельных резьбовертах, схватах роботов и др.), и поэтому их использование в ряде машин и приборов оправдано. Следует отметить перспективность использования подобных механизмов в связи с появлением новых металлических, полимерных и металлополимерных материалов, обладающих высокими и стабильными параметрами упругости и износостойкости. Актуальными задачами являются конструктивные совершенствования описанных механизмов и пх испытания в условиях длительной эксплуатации.  [c.162]

Промышленные роботы и манипуляторы, управляемые оператором или с помощью программного устройст- ва, могут быть отнесены к роботам первого поколения. В настоящее время должны получить быстрое развитие работы по созданию роботов последующего поколения обладающих некоторыми органами чувств человека, например, осязанием, слухом, видением, обонянием, и способных воспринимать некоторую неощутимую человеком информацию, например, реагировать на ультразвук, на электромагнитные и тепловые поля и т. д. К роботам еще более позднего поколения будут относиться устройства, обладающие искусственным интеллектом. В решение этой последней проблемы входят создание методов описания окружающего мира и формирования этого мира в памяти роботов, разработка специальных формализованных языков как средства для управления рсбота-ми, их обучения и управления их поведением. К проблеме искусственного интеллекта для роботов тесно примыкает проблема взаимодействия робота со средой и человеком, а также вопросы взаимодействия меладу челове-  [c.138]

Для получения математического описания механической системы промышленного робота как элемента замкнутой динамической системы используем его представление в форме некоторого оператора, например в виде дробно-рациональной функции, порядок которой определяется из анализа изменения длины дуги амплитудно-фазо-частотной характеристики (АФЧХ) объекта при изменении частоты. В результате анализа выявляется количество доминирующих полюсов частотной характеристики, после чего остается вычислить вещественные коэффициенты искомой дробно-  [c.62]

Пакет программ, служащий для оценки эффективности и сравнения различных систем программного и адаптивного управления манипуляционных роботов с электрическими приводами, описан в п. 3.9. Этот пакет имеет модульную структуру и позволяет моделировать управляемые движения роботов при различных типах программаторов, регуляторов, эстиматоров и адаптаторов. Структура пакета программных модулей представлена на рис. 3.3. На основе разработанного программного обеспечения были про-  [c.169]

Описанный адаптивный сборочный модуль применялся вместе с манипуляционным роботом УЭМ-2 для сборки изделий типа вал— втулка с гарантированным зазором 20 мкм при относительных погрешностях позиционирования около 3 мм. Сборка выполнялась без зацикливаний даже в тех случаях, когда начальное рассогла-сование в ориентации осей составляло 5°. Эта сравнительно большая угловая погрешность компенсировалась за счет податливости конструкции силомоментного датчика.  [c.178]

Общий объем программного обеспечения для микроЭВМ Электроника-60 составляет около 3000 операторов. В качестве инструментальной ЭВМ для его отладки использовалась ЭВМ Электроника-100-25 . Описанное программное обеспечение используется в управляющей микроЭВМ адаптивного робота ОЗУН-12000, снабженного системой технического зрения на базе ПЗС. Этот робот позволяет повысить производительность труда при микросварке миниатюрных электронных изделий в десятки раз [99].  [c.182]

Для автоматического распознавания объектов и анализа обстановки вблизи робота разработаны два метода. Первый метод основывается на вычислении признаков видимых объектов, инвариантных по отношению к преобразованиям их изображения, связанным с изменением ракурса восприятия и проектированием трехмерных объектов на плоскость изображения. Этот метод получил название метода инвариантного распознавания [38, 116]. В основе второго метода лежат алгоритмы логического описания классов распознаваемых объектов (режим обучения) с последующим логическим анализом изображения реальной обстановки (режим принятия решений). Описание этого логикоаксиоматического метода распознавания содержится в работах [9, 108, 119, 123]. Результаты распознавания используются для целеуказания объектов, подлежащих манипулированию или транспортировке, а также для уточнения геометрической модели окружающей робота среды. При построении модели среды (в частности, модели препятствий) существенно используется также информация от ультразвуковых датчиков ближнего и дальнего действия.  [c.211]

Описанные алгоритмы адаптивной обработки информации и интеллектуального управления были реализованы в виде пакета программных модулей для ЭВМ Одра-1204 , управляющей макетом манипуляционно-транспортного робота Адаптрон-3 . Этот пакет имеет иерархическую структуру, представленную на рис. 6.18.  [c.212]

В современных ГАП наряду с описанными выше папольными транспортными роботами широко используются н другие средства автоматической транспортировки грузов. К числу таких альтернативных средств относятся ленточные, роликовые и подвесные конвейеры с автоматическим адресованием гру ов, обслуживаемые манипуляционными роботами. Этот новый класс автоматических систем будем называть роботизированным конвейерным транспортом.  [c.216]


Фирма Юнимайшен Unimation, США) разработала ряд СТЗ для РТК (см. табл. 7.1). Одна из таких СТЗ применяется в адаптивном РТК для дуговой сварки. Она состоит из телекамеры и осветителя, устанавливаемых на манипуляторе сварочного робота (компоновка глаз на руке ), СТЗ предназначена для самонаведения сварочной головки на линию сварки, которая может сильно отклоняться от программной траектории из-за погрешностей в изготовлении и позиционировании свариваемых деталей. Получаемая видеоинформация о линии сварки используется для соответствующей коррекции программных движений манипулятора. Эту функцию визуального самонаведения выполняет адаптивная система управления РТК, реализованная на базе ЭВМ РДР-11/40. Время обработки видеоинформации колеблется в пределах 100—500 мс в зависимости от сложности свариваемых изделий. Точность визуального самонаведения сварочной головки не превышает 1,2 мм. Другой вариант использования СТЗ в РТК для дуговой сварки описан в п. 5.6.  [c.267]


Смотреть страницы где упоминается термин Описание роботов : [c.121]    [c.121]    [c.123]    [c.125]    [c.204]    [c.205]    [c.100]    [c.75]    [c.11]    [c.151]    [c.50]    [c.172]   
Смотреть главы в:

Машиностроение Энциклопедия Оборудование для сварки ТомIV-6  -> Описание роботов



ПОИСК



Описание

Описание роботов (К. П. Турский, В. А. Тимченко)

Робот



© 2025 Mash-xxl.info Реклама на сайте