Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение абсолютное свободного

Применим основные теоремы динамики системы к изучению движения абсолютно твердого тела. Как известно из кинематики, движение свободного абсолютно твердого тела можно рассматривать как сложное движение. Переносным движением можно считать поступательное движение, определяемое движением полюса относительным является движение тела относительно полюса.  [c.399]


Возникновение собственной скорости прецессии гироскопа в кардановом подвесе существенно отличает его свободное движение от свободного движения гироскопа без карданова подвеса (см. гл. II), совершающего нутационные колебания малой амплитуды около направления, неизменного в абсолютном пространстве.  [c.142]

При и — О звено абсолютно свободно и пара отсутствует, а при и = 6 два тела жестко связаны и образуют одно звено, следовательно, число условий связи пространственной кинематической пары может быть в пределах 6/= 1—5. Соответственно все кинематические пары подразделяют на пять классов по числу условий связи (ЧУС). К первому классу относят пары, налагающие на относительное движение звеньев одно условие связи и = 1, ко второму классу относят пары с двумя условиями связи У = 2 и т. д.  [c.20]

Следует заметить, что равенства (31.17) и (31.32) отнюдь не тождественны. Так, может случиться, что закон сохранения кинетического момента будет соблюдаться в движении относительном и не будет справедлив для движения абсолютного, или наоборот. Пусть, например, данная система состоит из весомых частиц тогда к каждой частице её приложена сила m g постоянного направления. Такая система сил эквивалентна одной силе, именно, весу Mg системы, приложенной к центру масс. Поэтому если рассматриваемая материальная система свободная, то закон сохранения кинетического момента выполняется для относительного движения вокруг центра масс но он не будет, вообще говоря, справедлив для движения абсолютного. Даже, если закон сохранения кинетического момента соблюдается для обоих движений, абсолютного и относительного, всё-таки постоянные во времени векторы Gq и <5 > будут, вообще говоря, различны и по модулю, и по направлению точно так же неизменные плоскости Лапласа для движений абсолютного и относительного будут в общем случае отличаться по своему направлению.  [c.313]

Для охлаждения реакторов используют замкнутые гибкие ленты (рис. 5.6), движущиеся в теплопоглощающей среде (ленточные радиаторы). Контактируя с поверхностью реактора, лента нагревается, а затем при свободном движении отдает тепло окружающей среде или (в" вакууме) излучает тепло в пространство [51 ]. Динамические эффекты, возникающие при стационарном движении абсолютно гибкого стержня, используют при создании баллистической антенны (рис. 5.7) [39 , 41, 44].. Вертикальная или наклонная вытянутая петля быстродвижущегося провода является излучателем антенны.  [c.104]


Следует заметить, что, строго говоря, название свободные электроны неприменимо даже и в этом случае, поскольку электроны не являются абсолютно свободными, пока их движение находится под влиянием поля магнита ондулятора. Поэтому слово свободный применяется в том смысле, что электрон не связан с каким-либо атомом пли группой атомов.  [c.429]

Однако движение тела в воздухе нельзя считать абсолютно свободным, так как оно находится под действием силы собственного веса и сопротивления воздуха..  [c.17]

Теоремы (2.2.5) и (2.3.1) выражают необходимые, но недостаточные уравнения движения свободных систем и достаточные уравнения движения абсолютно твердого тела, следовательно, не нарушая движения системы, ее можно рассматривать в каждый момент как абсолютно твердое тело (принцип затвердевания).  [c.69]

Это означает, что размах отклонений свободной поверхности от плоскости возрастает со временем движение абсолютно неустойчиво.  [c.53]

Двухмерные движения жидкости. Значительно проще наблюдение на поверхности жидкости, обыкновенно вполне достаточное в тех случаях, когда изучают течение двухмерное. Если, например, в баке, наполненном водою, движется цилиндрическое тело, основания которого совпадают с плоскостью дна бака и свободною поверхностью воды, то состояние течения во всех плоскостях, параллельных свободной поверхности воды, одинаковое и, если отвлечься от поверхностных сил на свободной поверхности, такое же, как на свободной поверхности. Правда, пренебрегать поверхностными силами и, следовательно, по наблюденным формам движения на свободной поверхности воды делать заключение о движении внутри жидкости — можно только в том случае, если поверхность .оды абсолютно чистая. Вполне достаточно соприкосновения воды с каким-нибудь предметом, содержащим даже ничтожные следы жира (например с рукою) или продолжительного соприкосновения свободной поверхности с воздухом и содержащимися в нем частицами пыли, чтобы сделать поверхность воды непригодной для наблюдения течения внутри нее. Хороший способ для проверки того, действительно ли поверхность БОДЫ достаточно чиста, чтобы дать возможность правильно наблюдать движение внутри воды, или же эта поверхность должна быть обновлена (проще всего путем водослива), заключается в следующем поверхность воды обсыпают алюминиевым или каким-нибудь другим порошком и затем легко дуют на эту поверхность перпендикулярно к ней, так что в этом месте частицы алюминия отходят во все стороны и на поверхности образуется круг, свободный от порошка. Если теперь перестать дуть, то в случае чистой поверхности частицы алюминия остаются в таком же положении, в случае же загрязненной поверхности — круг смыкается сам собою.  [c.273]

Рассмотрим задачу о движении системы свободных материальных точек Мо, М,,. .., Мп, находящихся под действием заданных сил. Пусть т, есть масса точки и г, т] , , — ее прямоугольные декартовы координаты в некоторой абсолютной системе отсчета ( = 0, 1, 2,. .., п).  [c.266]

Приступая к рассмотрению простейших видов движения абсолютно твердого тела, покажем, что свободное твердое тело имеет только шесть степеней свободы. Действительно, положение твердого тела К относительно неподвижной системы декартовых координат Оху (рис. 2.9) будет однозначно определено, если известны положения трех его точек Л, 5 и С, не лежащих на одной прямой. Таким образом, задание положения тела К можно осуществить с помощью девяти декартовых координат точек А, В, С. Однако между этими координатами существуют три соотношения, выражающие постоянство расстояний между точками А, В н С  [c.20]

В таком виде, как мы знаем, уравнение кинетического момента получается для системы свободных материальных точек. Векторное уравнение кинетического момента описывает также движение абсолютно твердого тела с одной неподвижной точкой при этом конечные суммы переходят в интегралы (гл. VI).  [c.199]

При жестком движении системы свободных материальных точек кинетический момент имеет вид кинетического момента абсолютно твердого тела. Следовательно,  [c.480]

Как известно, в общем случае всякое свободно движущееся в пространстве абсолютно твердое тело (рис. 1.3), положение которого определяется тремя произвольно выбранными точками А, В и С, обладает шестью степенями свободы. В самом деле, положение твердого тела в пространстве фиксируется координатами трех его точек Л, В и С, т. е. девятью координатами (х , Уа, л), у в, Zg] и (Хс, Ус, с)- Между собой эти координаты связаны тремя условиями постоянства расстояний АВ, ВС, СА. Таким образом, число независимых параметров, определяющих положение твердого тела в пространстве, равно шести и тело обладает шестью степенями свободы. Движение такого тела может быть всегда представлено как вращение вокруг и перемещение вдоль трех произвольно выбранных взаимно перпендикулярных осей х, у и  [c.22]


В настоящее время абсолютные величины электронной и ядер-ной энергий не могут быть определены, но изменения в величинах этих энергий можно оценить эмпирически по данным теплот образования или сгорания для конкретных рассматриваемых соединений. Значительные сдвиги произошли в области определения величин различных видов термической энергии. Например, на основании классической кинетической теории газов вычислено, что Усредняя энергия поступательного движения в идеальном газе составляет RT. Так как поступательному движению молекулы в свободном от поля пространстве соответствуют три степени свободы (по одной на каждую ось координат), то RT внутренней энергии должна приходиться на каждую степень свободы.  [c.31]

Энергетическое состояние системы, имеющей огромное число охваченных тепловым движением частиц (атомов, молекул), характеризуется особой термодинамической функцией F, называемой свободной энергией (свободная энергия F=U — TS, где и — внутренняя энергия системы Т — абсолютная температура S — энтропия).  [c.44]

Уравнения (44.12) и (44.14), полученные из принципа Лагранжа— Даламбера, необходимы и достаточны для описания движения свободного абсолютно твердого тела.  [c.64]

Динамика материальной точки ( точки с переменной массой, (не-) свободной материальной точки, относительного движения материальной точки, системы материальных точек, абсолютно твёрдого тела, поступательного и вращательного движений твёрдого тела, плоского движения твёрдого тела, сферического и свободного движений твёрдого тепа, несвободной системы, неголономной системы, идеальной жидкости..,).  [c.21]

Заметим, наконец, что равенство (I. 113) позволяет найти интеграл энергии также для движения свободной материальной системы относительно ее центра инерции, если в относительных координатах выполняется равенство (I. 119). Если рассматривается движение несвободной материальной системы относительно ее центра инерции, то и для движения этой системы можно найти интеграл энергии в том случае, когда в относительных координатах связи идеальные и стационарные. Конечно, может оказаться, что связи, идеальные в абсолютной системе координат, не будут идеальными в относительной системе, рассматриваемой при изучении движения механической системы относительно ее центра инерции, и наоборот.  [c.100]

Примеры подобного рода, а также неудачные попытки обнаружить какое-либо движение Земли относительно светоносной среды приводят к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя. Более того, они свидетельствуют о том, что для всех систем координат, в которых выполняются уравнения механики, должны быть справедливы те же самые законы электродинамики и оптики, как это уже было доказано для величин первого порядка малости ). Эту гипотезу (содержание которой мы будем ниже называть принципом относительности ) мы намерены превратить в постулат и введем также другой постулат, который только кажется не согласующимся с первым, а именно, что в пустоте свет всегда распространяется с определенной скоростью с, не зависящей от состояния движения излучающего тела. Этих двух постулатов достаточно для того, чтобы, положив в основу теорию Максвелла для неподвижных тел, построить свободную от противоречий электродинамику движущихся тел. Будет доказано, что введение светоносного эфира излишне, поскольку в предлагаемой теории не вводится наделенное особыми свойствами абсолютно неподвижное пространство , а также ни одной точке пустого пространства, где происходят электромагнитные явления, не приписывается вектор скорости.  [c.372]

Представим, что мы движемся на автомобиле по абсолютно ровной дороге. Выключив двигатель, мы прерываем приток энергии от сгорания топлива, и автомобиль начинает двигаться свободно. Какой высокой ни была бы его начальная скорость, рано или поздно он остановится. Силы трения между покрышками колес и покрытием дороги, трение между внутренними частями автомобиля, а также сопротивление воздуха делают свое дело - энергия движения автомобиля превращается в тепловую энергию и рассеивается. При.  [c.273]

Шестерня /, свободно сидящая на пальце кривошипа 0 радиусом = 0,4 м, находится в зацеплении с неподвижным колесом. Определить угловую скорость шестерни / относительно кривошипа и абсолютную скорость ы этой же шестерни в сложном движении.  [c.135]

Поясним закон сохранения количества движения примером отдачи орудия при выстреле. Представим себе, что из орудия весом расположенного на гладкой горизонтальной платформе, вылетает в горизонтальном направлении (по оси Ох) снаряд весом со скоростью (абсолютная скорость). При этом откат орудия происходит также в горизонтальном направлении. Требуется определить абсолютную скорость свободного отката орудия.  [c.578]

Вычисление работы и мощности произвольной системы сил, приложенных к твердому телу. Пусть к свободному твердому телу приложена произвольная система сил Р ,. .., Рц. Выберем в теле произвольную точку О за полюс. Тогда по формуле, установленной в кинематике (4, 76), абсолютная скорость к-й точки тела в общем случае его движения будет равна  [c.644]

Критическая температура имеет весьма простое молекулярно-кинетическое истолкование. Так как объединение свободно движущихся молекул в каплю жидкости при сжижении газа происходит исключительно под действием сил взаимного притяжения, необходимо, чтобы максимальная энергия притяжения двух молекул, равная значению потенциальной энергии взаимодействия двух молекул в точке минимума кривой и (г), т. е. По. была по абсолютной величине не меньше средней кинетической энергии относительного движения двух молекул, равной в среднем кТ. Сжижение газа, т. е. переход вещества из газовой фазы в Жидкую, имеет место при температурах Т поэтому должно выполняться условие Цд кТк-  [c.196]


Возмущенные значения скорости и давления также пропорциональны множителю Q p ikx - /со О- Описание возмущенного движения осуществляется на основе полных уравнений Навье—Стокса при сохранении во всех соотношениях тех членов, в которые возмущенные величины входят лишь в первой степени (отсюда название линейная теория ). С точностью до линейных по возмущениям величин записываются и граничные условия на стенке и свободной поверхности пленки. Последние учитывают действие силы поверхностного натяжения (из-за искривления поверхности). Предполагается также, что трение на свободной поверхности пленки равно нулю. Линейная теория описывает полностью (с точностью до абсолютного значения амплитуд возмущенных величин) возникающее движение и позволяет установить значение частот со при известных волновых числах к и остальных параметрах задачи. Исследование этой зависимости и составляет центральную задачу линейной теории устойчивости.  [c.166]

В технических приложениях чаще всего имеют дело с движением капель в активных газовых потоках, т.е. с такими устройствами, в которых газовый поток сам движется относительно стенок аппарата. В этом случае величина и о характеризует скорость движения капель относительно газа. Если, например, газ движется вниз со скоростью W", то фактическая скорость капель определяется суммой + W". При восходящем движении газа скорость капель относительно стенок канала равна W" -. При равенстве абсолютных значений скорости подъемного движения газа W" и скорости свободного падения капли капля зависает в газовом потоке, поэтому для данного размера капель в приложениях называется скоростью витания. Если скорость восходящего движения газа превосходит скорость витания, то капля уносится газовым потоком.  [c.229]

Изучаемой системы при различных амплитудах и называется скелетной кривой. Рассматривая характер полученных резонансных кривых, мы замечаем следующее при частоте воздействия р, меньшей частоты свободных колебаний (Оц, в системе всегда происходит однозначно определяемое колебательное движение с амплитудой, зависящей от величин Р и р. Когда в процессе своего изменения р становится больше сод, то, начиная со значения р> в системе, кроме существовавшего ранее движения, оказываются возможными еще два колебательных процесса с различными амплитудами. При этом амплитуда исходного вынужденного процесса с ростом р продолжает расти (область А), амплитуды же двух вновь появившихся решений изменяются так, что одна из них растет с ростом р (область С), другая уменьшается (область В). Линия раздела этих областей показана на рис. 3.17 штрих-пунктиром и она проходит через точки амплитудных кривых с вертикальными касательными. Таким образом, если для заданной амплитуды Р воздействующей силы ее частота р изменяется, начиная с малых значений до любых сколь угодно больших значений и обратно, мы получим однозначное решение, соответствующее одной из ветвей резонансной кривой в области А. Заметим, что здесь нас интересовала лишь величина а, ее абсолютное значение, а знак амплитуды, связанный с возможным изменением фазы на л не учитывается. Отметим лишь, что колебания в областях Л и 5 для одной и той же амплитуды внешней силы Р отличаются друг от друга по фазе на л.  [c.101]

Если в точке М поместить свободный гироскоп, ось Уу наружной рамки которого совпадает с осью а ось z ротора гироскопа составляет с осью р угол а = о то можно представить без каких-либо доказательств, что после любого поворота оси у у наружной рамки карданова подвеса вокруг точки Оу (движение точки М по сфере) по возвращении точки М в первоначальное положение угол а сохранит прежнее значение, равное о- При этом абсолютная угловая скорость вращения оси z ротора свободного гироскопа вокруг любой оси, лежащей в экваториальной плоскости его ротора (плоскость ху), равна нулю.  [c.420]

Очевидно, что две силы, будучи приложены к свободному абсолютно твердому телу, не изменят его состояния движения или покоя, т. е. образуют уравновешенную систему сил только в том случае, когда модули этих сил равны между собой, их направления противоположны, а линии их действий совпадают, т. е. в этом случае (Fi, Fa) = 0. Ясно также, что если к свободному абсолютно твердому телу приложить уравновешенную, т. е. эквивалентную нулю, систему сил или отбросить такую систему, то его состояние движения или покоя не изменится.  [c.146]

Для этого свободного движения абсолютная величина скорости V на основании интеграла живых сил определяетсся равенством  [c.455]

Рассмотрим сначала простейшее представление электрический ток — это движение электронов под воздействием приложенного электрического поля. В металлах число электронов, участвующих в электропроводности, зависит от структуры кристалла, а для одновалентных металлов —это один электрон на атом Поведение электрона, находящегося в твердом теле, удобнее всего описывать в трехмерной системе координат, для которой три декартовы координаты кх, ку и кг являются компонентами волнового числа к. Электрону с энергией Е и импульсом р соответствует волновое число к. Согласно уравнению де Бройля, р=Ьк (где Й—постоянная Планка, деленная на 2л) и Е р 12т. Положение электрона в -пространстве характеризуется вектором к, пропорциональным импульсу электрона. В ыеталле, содержащем N свободных электронов, при абсолютном нуле температуры электроны займут N 2 низших энергети-  [c.187]

Теорема о сложении ускорений. Пусть подвижная система Охуг движется относительно неподвижной как свободное твердое тело. Обозначим скорость и ускорение начала (полюса) О по отношению к осям через Vq и Wq, а мгновенную угловую скорость и угловое ускорение самого трехгранника Oxyz по отношению к тем же осям Q ti через м и е (рис. 158). Рассмотрим точку М. совершающую движение, которое вообще не зависит от движения системы Oxyz. Обозначим через р и г ее абсолютный и относитель-7 ный радиусы-векторы, а через р , радиус-вектор точки О. Тогда в любой момент времени  [c.162]

К этой группе следует отнести множество издавна известных явлений. Например, частицы брошенного свободно камня будут находиться в состоянии невесомости , если при движении камня для его частиц будет выполняться условие (IV.227а) или (1У.227Ь). Условие (1У.227Ь) выполняется для частиц камня при предположении, что камень является абсолютно твердым телом.  [c.447]

Представим, что мы движемся на автомобиле по абсолютно рювной Дороге. Выключив двигатель, мы прерываем приток энергии от сгорания топлйг ва, и автомобиль начинает двигаться свободно. Какой высокой ни была бы его начальная скорость, рано или поздно он остановится. Силы трения между покрышками колес и покрытием дороги, трение между внутренними частями автомобиля, а также сопротивление воздуха делают свое дело - энергия движения автомобиля превращается в тепловую энергию и рассеивается. При этом немного нагреваются колеса и движущиеся механизмы автомобиля, о-рожное покрытие и окружающий воздух.  [c.101]

В середине XIX в. Герц предложил теорию, согласно которой эфир полностью увлекается телами при их движении. Эта теория была опровергнута в 1851 г. опытами Физо. Позднее Лоренц развил теорию, основанную на противоположной гипотезе — гипотезе неподвижного эфира. Лоренц предположил, что существует абсолютно неподвижный эфир, сквозь который свободно проходят все двин<ущиеся тела. Наблюдатель в системе, связанной с движущимся телом, должен ощущать эфирный ветер , скорость которого соответствует скорости движения тела относительно неподвижного эфира. Экспериментальные поиски эфирного ветра,  [c.33]


В рассмотренном случае, когда соударение свободного шара и шара упругой гантели происходит вдоль оси гантели, помимо колебаний шаров гантели может возникнуть только поступательное движение гантели вдоль направления ее оси. Но в обш,ем случае соударения шаров, пронсходяш,его не вдоль оси гантели, а под углом к ней, в результате удара (так как после удара гантель становится замкнутой системой) может возникнуть вращение гантели вокруг одной из свободных осей. Как было показано ( 99), у гантели, как у всякого твердого тела, могут существовать три свободные оси две оси, проходящие через центр тяжести перпендикулярно к оси гантели и перпендикулярно друг к другу, и третья ось, совпадающая с осью гантели. Однако если мы, так же как при рассмотрении удара твердых молекул, будем считать, что поверхности шаров абсолютно гладкие и, значит, ни при каком направлении удара не могут возникнуть тангенциальные силы (т. е. силы трения), то мы должны, как и в 96, прийти к выводу, что при соударении гантели с шаром вращение гантели вокруг ее оси возникнуть не может. Поскольку возможно вращение упругой гантели вокруг только двух взаимно перпендикулярных осей, упругая гантель обладает двумя вращательными степенями свободы. Помимо того, как и всякое тело, упругая гантель обладает тремя поступательными степенями свободы. Как было показано ( 96), жесткая гантель обладает также тремя поступательными и двумя вращательными, т. е. всего пятью, степенями свободы. Что же касается упругой гантели, то, как мы убедились, упругой гантели свойственно еще одно движение — противофазные колебания шаров, положение которых однозначно задается расстоянием одного из шаров до центра тяжести гантели. Это значит, что помимо пяти указанных выше степеней свободы упругая гантель обладает еще одной, шестой, степенью свободы.  [c.647]

Чистый совершенный полупроводник (например, 51, дл которого АЕ 1,1 эВ) вблиаи абсолютного нуля ведет себя как изолятор. С повышением температуры наступает такой момент, когда энергии теплового возбуждения достаточна для массового переброса электронов из валентной зоны в зону проводимости. В результате такого перехода в зоне проводимости появятся электроны, а в валентной зоне — свободные от электронов энергетические уровни, которые, можно в разумных границах ассоциировать с положительными зарядами (дырками). В отсутствие внешнего электрического поля электроны и дырки совершают хаотическое движение. При включении внешнего электрического поля осуществляется направленное движение носителей заряда (дрейф) причем электроны двигаются преимущественно против поля,, а дырки —по направлению поля.  [c.84]

Границы с малыми углами 0 менее подвижны, чем с большими. Скорость проскальзывания по границе с большим углом примерно в 10 раз больше, чем с малым углом. Большеугловые границы более подвижны в связи с тем, что содержат повышенную концентрацию вакансий. Подвижность границ с большими углами демонстрируется хорошо известным фактором при рекристаллизации быстрее всех растут зерна, повернутые на значительные углы. Например, для г. ц. к. металлов при повороте на угол 30—40° вокруг оси [111] по отношению к своим соседям наблюдается отличие текстуры рекристаллизации от текстуры деформации. Согласно теории большеугловых границ Мотта межзеренное проскальзывание, т. е. относительное движение двух кристаллических поверхностей, происходит тогда, когда появляется разупрочненное состояние ( оплавление ) атомов вокруг каждого из островков хорошего соответствия. Свободная энергия F, необходимая для процесса разупрочнения, уменьшается с повышением температуры и в точке плавления будет равна нулю, а при абсолютном нуле будет равна пЬ, где L — латентная теплота плавления на атом, а п — величина, характеризующая структуру границы и соответствующую числу атомов в островке хорошего соответствия. Согласно этой гипотезе предлагается следующий вид функции F T)  [c.171]


Смотреть страницы где упоминается термин Движение абсолютное свободного : [c.65]    [c.55]    [c.479]    [c.269]    [c.249]    [c.211]    [c.63]    [c.7]    [c.69]    [c.174]   
Теоретическая механика Изд2 (1952) -- [ c.590 ]



ПОИСК



Аналитическое изучение движения свободного абсолютно твёрдого тела

Движение абсолютное

Движение абсолютное падающего свободно

Движение абсолютное свободной материальной точки

Движение свободное

ОБЩИЙ СЛУЧАЙ ДВИЖЕНИЯ СВОБОДНОГО АБСОЛЮТНО ТВЁРДОГО ТЕЛА Геометрическое изучение движения свободного абсолютно твёрдого тела



© 2025 Mash-xxl.info Реклама на сайте