Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейное упругое и вязко-упругое тело

В главах 1—3 изложены общие вопросы. Приведены сведения об основных моделях, применяемых при решении дифракционных задач. Изложены основные соотношения линейных упругих и вязко-упругих тел. Дана постановка линеаризованных задач для нелинейных тел. Изложена классическая и уточ-  [c.6]

Указанные модели вязкоупругого тела становятся весьма наглядными, если их представить в зиде комбинации простейших элементов —упругого и вязкого. Упругий элемент имеет вид пружины (см. рис. 7.4, а) с линейной характеристикой, т. е. о = Ее. Вязкий элемент представляет собой цилиндр (рис. 7.4, б) с вязкой жидкостью, в котором перемещается поршень с отверстием или с зазором вдоль стенки цилиндра, благодаря чему жидкость может перетекать из одной части цилиндра в другую. При постоянной силе поршень перемещается с постоянной скоростью, или, иначе говоря, а = В модели Максвелла деформации в упругом и вязком элементах суммируются, а напряжения одинаковы. Это соответствует последовательному соединению элементов (рис. 7.5, а). В модели Фойгта суммируются напряжения в элементах, а их деформации одинаковы. Такая картина получится, если элементы соединить параллельно (рис. 7.5, б).  [c.757]


Уравнение (5) характеризует реологическое состояние среды, в которой при постоянной деформации напряжение релаксирует до нуля по экспоненциальному закону. Уравнение (6) описывает деформацию среды с последействием. В этой среде при мгновенном снятии напряжений деформация экспоненциально убывает до нуля. Уравнение (7) соответствует деформации сложной среды с релаксацией напряжения и последействием. Следует отметить, что в литературе деформацию упругого последействия часто называют эластической. Если она достигает очень высоких значений, ее общепринято именовать высокоэластической. Аналогично уравнениям (5)—(7) можно составить уравнение модели вязко-упругого тела с любым (конечным или бесконечным) набором времен релаксации и последействия. Естественным обобщением модельной теории вязко-упругой среды является интегральная теория вязко-упру-гости, в которой спектры времен релаксации и последействия могут быть как дискретными (тогда реологическое поведение тела можно описать соответствующей моделью), так и непрерывными. Изложение этой теории описано, например, в монографии Д. Бленда Теория линейной вязкоупругости (Издательство Мир , М. 1965).  [c.16]

Монография посвящена исследованию длительного разрушения изотропных и анизотропных вязко-упругих тел на основе изучения кинетики роста трещин в телах с различной геометрией и реологическими свойствами материала. В основу исследования положена разработка кинетической модели роста трещины в вязко-упругом теле, исходя из ряда положений модели разрушения Леонова — Панасюка — Дагдейла. Рассматриваются линейные вязко-упругие тела. Исследование ведется в квазистатической постановке.  [c.4]

Линейно-деформируемые упруго-вязкие и вязко-пластические тела  [c.396]

Автор полагает, что в книге этого типа следовало привлечь внимание к аналогии между уравнениями теории изотропной упругости, вязкости и вязко-упругости, поскольку линейные уравнения чисто вязкой среды многое проясняют в теории медленной ползучести твердых тел при повышенных температурах указанная взаимосвязь расширяет кругозор читателей.  [c.11]

В работе А. Б. Ефимова (1966) рассмотрена осесимметричная контактная задача для линейно-вязко-упругих тел. Контактное давление автор выражает через интегральный оператор, воздействующий на некоторую функцию координат г и времени i, отображающую влияние нагружения и разгрузки. При этом установлено, что связь контактного давления с радиусом круга контакта при повторной разгрузке зависит не от полной истории процесса контакта, а от соответствующей усеченной траектории нагружения — разгрузки .  [c.200]


Наиболее широко распространен вариант линейного вязко-упругого тела или наследственного тела Больцмана, содержащегося в (2.2). По вязкоупругости наиболее существенные результаты в СССР получены в работах Н. X. Арутюняна, А. А. Ильюшина, А. К. Малмейстера, Ю. Н. Работнова и др.  [c.371]

Здесь Р (а) — линейная функция от о и производных о до порядка п включительно с постоянными коэффициентами, Q e) — такая же функция от деформации е. К соотношению вида (17.5.9) можно прийти, если рассмотреть модель, составленную из большого числа пружин и вязких сопротивлений, соединенных в разных комбинациях последовательно и параллельно. Конечно, было бы достаточно наивно искать в структуре материала соответствующие упругие и вязкие элементы, однако способ, основанный на построении реологических моделей, обладает некоторым преимуществом. Мы убедились, что в уравнении (17.5.8) должно быть J. < , при этом не было необходимости в обращении к модели, условие < Е, из которого следует первое неравенство, означает только то, что приложенная сила совершает положительную работу, расходуемую на накопление энергии деформации, а частично рассеиваемую в виде тепла. В общем случае (17.5.9) тоже должны быть выполнены некоторые неравенства, которые могут быть не столь очевидны. Но если построена эквивалентная реологическая модель из стержней, накапливающих энергию, и вязких сопротивлений, рассеивающих ее, то у нас есть полная уверенность в том, что для соответствующего модельного тела законы термодинамики будут выполняться. Второе преимущество модельных представлений состоит в том, что для любой заданной конфигурации системы может быть вычислена внутренняя энергия, представляющая собою энергию упругих пружин, и скорость необратимой диссипации энергии вязкими элементами. Имея в распоряжении закон наследственной упругости (17.5.1), (17.5.2), мы можем подсчитать полную работу деформирования, но не можем отделить накопленную энергию от рассеянной. Поэтому, например. Блонд целиком строит изложение теории на модельных представлениях.  [c.590]

В реологии, в частности, изучаются такие представители классических идеальных тел, как твердое тело Гука, жидкость Ньютона и твердое тело Сен-Венана. Первое—идеальное линейно упругое тело—является объектом классической теории упругости, второе — простая , вязкая жидкость — объектом классической гидродинамики, третье—твердое тело, имеющее предел текучести, ниже которого тело является абсолютно твердым, а при достижении которого течет, —изучается в теории идеальной пластичности.  [c.512]

Первоначальные исследования в области реологии, относящиеся ко второй половине прошлого столетия и связанные с именами Максвелла, Фойгта, Кельвина, Больцмана, были посвящены течению весьма вязких жидкостей и дисперсных систем (коллоидных растворов, суспензий). Отправным пунктом этих исследований послужила идея объединения в одной модели свойств упругости и вязкости. Наибольшее развитие получила теория линейных вязко-упругих тел, т. е. таких, для которых реологическое соотношение имеет вид  [c.753]

Как видно из формул (1.10) и (1.11), зависимость F от е, линейная интегральная и в начальный момент времени тело проявляет мгновенную упругость, а затем уже вязкое течение. Как правило, большинство реальных твердых тел при динамическом деформировании обладает этим свойством.  [c.7]

В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]


Если функции (т) и у р (т) линейные, то область упругих деформаций, в которой это условие справедливо, является областью линейного вязко-упругого поведения материала. Установление этого факта чрезвычайно важно, так как линейная теория вязко-упругости хорошо разработана [23], что определяет широкие возможности для оценки поведения линейных тел в различных условиях.  [c.101]

Уравнения, аналогичные уравнениям (3.4.2) и (3.4.3), получены в заботах [392, 393]. Отметим, что решение задач о предельном равновесии линейных упруго-вязких тел с трещинами в обсуждаемой постановке можно получить из упругого решения для предельной (критической) нагрузки простой заменой упругих характеристик материала соответствуюш,ими временными операторами.  [c.202]

В настоящее время большое развитие получили исследования по линейной механике разрушения, изучающей развитие трещин в идеально упругих телах. Фундаментальные аспекты в этой области (теории, модели, критерии) к настоящему времени уже обоснованы и логически завершены. Значительно меньшее развитие получила механика разрушения вязко-упругих тел. Это направление механики разрушения сейчас интенсивно развивается в связи с широким использованием в промышленности и строительстве новых конструкционных вязко-упругих материалов, таких, как полимеры, стеклопластики, углепластики и др.  [c.3]

В качестве примеров исследованы задачи о росте трешин в материалах, описываемых моделями Максвелла, Фойгта и Кельвина (стандартное линейное тело). В заключение рассмотренная задача обобщается на пространственный случай. Указывается, что из полученных результатов легко найти решение задачи о росте дискообразной трещины в вязко-упругом массиве (вязко-упругий аналог задачи Зака). В случае вязко-упругого аналога задачи Гриффитса для тела Максвелла получена простая формула  [c.12]

Линейно-деформируемое упруго-вязкое тело, обладающее последействием. Сама по себе ньютонова вязкая жидкость не представляет большого интереса с точки зрения прочности, но с учетом ее свойств строятся многие расчетные модели тел, обладающих одновременно упругостью и вязкостью. Так, одна из наиболее простых и основных таких моделей получается при условии, что напряжение можно представить в виде суммы двух частей, одна из которых связана по закону Гука с деформацией, а другая определяется соотношением вида (13.2). В результате  [c.398]

Линейно-деформируемое упруго-вязкое релаксирующее тело. Упруго-вязкое тело, соединяющее свойства упругого тела и вязкой жидкости, можно характеризовать также и тем, что скорости деформаций его определяются как упругими, так и вязкими его свойствами. Но для упругого тела  [c.400]

Нелинейное упруго-вязкое тело с полуэмпирической связью напряжений и деформаций. Для упрощения экспериментальных исследований часто пользуются полуэмпирическими зависимостями между напряжениями и деформациями упруго-вязких тел. Одной из наиболее обоснованных некоторыми энергетическими соображениями является зависимость, которая для линейного напряженного состояния имеет вид  [c.416]

Установившееся течение обобщенно-вязкой среды в трубе. В предыдущих главах при изучении равновесных состояний несжимаемых упругих или вязких тел считались спра ведливыми линейные соотношения между напряжениями и деформациями или напряжениями и скоростями деформаций соответственно. Рассмотрим теперь зависящее от скорости течение сред при более общем условии, — что скорость сдвига представляет собой известную функцию напряжения сдвига. В качестве примера выберем установившееся спокойное течение такой обобщенно-вязкой среды в прямой цилиндрической трубе и найдем распределение скоростей в сечении трубы и градиент давления, обеспечивающий через трубу заданное значение расхода ).  [c.433]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]

Маккартни [171] в рамках модели Дагдейла рассмотрел развитие трещины в линейном вязко-упругом теле под действием постоянной или монотонно возрастающей нагрузки. В этой работе используется как локальный энергетический критерий в форме, предложенной Кнауссом [165], так и глобальный энергетический критерий. Отмечается, что рост трещины в -вязко-упругом теле Мак-свелла можно описать с помощью упомянутых выше критериев, если учитывать диссипацию энергии в к01нцевой зоне. Показано, что локальный энергетический критерий позволяет описывать закономерности роста трещин в вяз-ко-упругих телах более общей реологической структуры. Так, скорость трещины нормального разрыва в вязко-упругом теле,, деформирование которого описывается интегральными операторами разностного типа, в случае постоянных внешних нагрузок определяется формулой  [c.19]


Максвелла, Кельвина ), Фойхта ). Здесь следует указать на простейгпие модели вязкоупругой среды Максвелла (рис. 9.3) и Фойхта (рис. 9.4), представляюгцие вязко-упругое тело в виде комбинаций упругих и вязких элементов. Упругий элемент имеет вид пружины с линейной характеристикой, Рис. 9.3 т. е. сг = Ее. Вязкий элемент представля-  [c.212]

Деформация линейно растет со временем t. Для разных значений 0= onst уравнения (4.9) изображаются пучком лучей, выходящих из точки А (рис. 4.5) получается семейство кривых ползучести для вязко-упругого тела. При внезапной разгрузке от значения 0 до а = 0 получается график, показанный на рис. 4,6, а при разгрузке и нагружении обратного знака до величины —о получается график на рис. 4.7.  [c.205]

Поведение полимерных материалов при умеренных напряжениях, оторые обычно допускаются в конструкциях из этих материалов, как оказывается, вполне удовлетворительно описывается теорией линейной вязкоупругости, притом с ядрами довольно сложного вида (не такими, которые соответствуют простейшим реологическим моделям тела Максвелла или стандартного вязко-упругого тела). Предшествующие теоретические исследования дали в руки готовый аппарат для построения теории вязко-упругости полимеров, и в этой области за короткое время были достигнуты значительные успехи. Большой объем исследований был выполнен научными коллективами при участии А. А. Ильюшина,  [c.123]

Указанная задача была впервые рассмотрена А. Р. Ржаницыным (1946, 1949). Модель линейного вязко-упругого тела удовлетворительно описывает ползучесть многих видов полимеров и бетона поэтому она широко применяется для расчета конструкций из этих материалов. Укажем на работы Г. С. Григоряна (1964) и Е. Н. Синицына (1966). В. В. Болотин и Е. Н. Синицын (1967) решили задачу о поверхностном выпучивании полупространства из слоистого материала, один из компонентов которого обладает линейными вязко-упругими свойствами. Общая теория вязко-упругих слоистых оболочек с воспринимающими поперечный сдвиг заполнителями при конечных прогибах развита Э. И. Григолюком и П. П. Чулковым (1964).  [c.348]

Гидродинамич. ур-ия движения вязкой жидкости аналогичны соответственным ур-иям для упругого тела. В обоих случаях д. б. рассмотрены относительные перемещения частиц среды, к-рые вызывают соответственные силы натяжения или сопротивления. Принимают в целях возможного упрощения задачи, что эти натяжения являютбя линейными ф-иями перемещений. Возьмем какие-нибудь две соседние точки среды с координатами х, у, е и х+<1х, у+йу, г+(1з вектор, их соединяющий, будет иметь длину  [c.413]

В значительном диапазоне влагосодержаний — от начального, формовочного о до влагосодержания конца усадки Ик.у — глина или керамическая масса изменяет свои размеры линейно с изменением влагосодержания. У ряда глин и масс имеется еще участок, на котором между размером и влагосодержанием существует криволинейная зависимость, однако этот участок незначителен по абсолютной величине усадки. Формование изделий производится при некотором так называемом формовочном влагосодержании. Последнее обычно выше предела раскатывания (по Аттербергу), но ниже предела текучести. В диапазоне от Но до и ,у глина является упруго-вязко-пластичным телом, обладающим коагуляционной структурой. Основная форма связи влаги с материалом в этом периоде — осмотическая. Имеющиеся экспериментальные данные свидетельствуют, что в этом интервале влагосодержаний коэффициент потенциалопроводности а мало зависит от влагосодержания и очень сильно зависит от температуры материала. Характерно также, что развитие поля влагосодержаний обладает значительной инерционностью по сравнению с инерционностью развития поля температур (величина критерия Лыкова Lu = 0,l-ь0,3).  [c.143]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

Сплошная среда, для которой наблюдается значимое изменение Т в некотором интервале изменения интенсивности сдвиговых скоростей деформаций Н (вязкое упрочнение) называется вязко-пластичной средой (рис. 43, а). В общем случае реальные металлы обладают деформационным и вязким упрочнением. Поведение таких металлов можно аппроксимировать поведением их моделей. Так, на рис. 42, б показана ахшроксимация кривой (рис. 42, а) при помощи двух линейных участков. Участок АВ соответствует приближенному описанию упругого поведения среды, а участок ВС - пластического. Рядом с диаграммой показана схема ее механического аналога. В схеме растяжению двух пружин до перемещения тела массой т соответствует упругий участок диаграммы, а растяжению верхней пружины - пластический участок. Если участок ВС горизонтален (рис. 42, в), то диаграмма соответствует модели материала, назьшаемой идеальной упруго-птстинной <ред<Л.  [c.154]

В предыдущих главах были изучены классические идеальные тела, в которых либо объемная деформация и деформация формоизменения, либо скорость деформации пропорциональны соответствующему напряжению, т. е. в обоих случаях являются линейными функциями напряжепий. Теперь перейдем к более сложньш видам поведения материалов, в которых основные свойства —упругость, вязкость и пластичность — объединены, так что при некоторых условиях материал может вести себя упруго и течь вязко или даже может обладать упругой обратимой деформацией, п.ласти-ческим течением и вязким течением одновременно пли отдельно. Однако во всех этих случаях реологические уравнения, связываютци( напряжения и деформации и их скорости, будем принимать линейными. Только после того, как будет показано, насколько поведение реальных материалов мо/кет описываться уравнениями этого рода, мы перейдем к нелинейным зависимостям.  [c.134]

Соотношение (13.2) описывает поведение довольно широкого класса тел (упругих, вязких, ползущих). Оно пригодно и для описания упруго-пластического поведения. В этом случае функции /г/ задаются разными аналитическими выражениями для активного и пассивного процессов, причем эти функции, по свойству пластичности, должны быть однородными первой степени относительно скоростей, а для пассивной ветви — совпадать с дифференциальной формой линейной упругости. Если (13.2) является законом для активного процесса, то для пассивного дЬлжно быть  [c.34]


Исходя из представления об изменении количества движения окружающей тело жидкости за счет действия на нее лобовой части тела, Ньютон получает квадратичный закон зависимости первой составляющей сопротивления от ск( рости. Что касается второй составляющей сопротивления, зависящей от трения, то для ее определения Ньютон дал З же ставшую классической формулу пропорциональности напряжения трения между двумя слоями жидкости относительной скорости скольжения этих слоев. Последняя формула носит имя Ньютона, обобщена на любой случай движения как несжимаемой жидкости, так и сжимаемого газа и служит основой всей современной механики вязкой жидкости. Сопротивление трения, ио Ньютону, оказывается пропорциональным первой степени скорости, остальные составляющие сопротивления (упругость газа, силы сцепления в нем) Ньютон оценивает некоторой постоянной величиной, вследствие чего для полного сопротивления получает трехчленную формулу, состоящую из квадратичного члена, линейного члена и постоянного слагаемого. В настоящее время эта формула уи<с не представляет особого интереса, но свою исто-)шческую роль она несомненно сыграла. Следует отметить, что Ньютон определил коэффициенты своей формулы на осповаиии целого ряда ти1ательно проведенных опытов.  [c.20]

Можно определить деформацию ползучестй, считая ее состоящей из двух частей чисто вязкой деформации, соответствующей линейно упруго-вязкому релаксирующему телу, и деформации, являющейся результатом последействия при переменном времени релаксации. Первая, как мы видели, происходит с постоянной скоростью. Вторая для линейно упруго-вязкого тела, обладающего последействием, если принять, что при / = О, г = 0. представляется в виде  [c.421]

Рассматриваются задачи о продольных нестационарных колебаниях вязкоупругого стержня конечной длины, удар вязко-упругого стержня о жесткую преграду и распространение волн напряжений в полубесконечном вязкоупругом стержне. В качестве модели, описывающей вязкоупругие свойства материала стержня, используется обобщенная модель стандартного линейного тела, содержащая дробные производные различных порядков. Задачи решаются методом преобразования Лапласа, при этом в отличие от традиционных численных подходов характеристическое уравнение не рационализируется, а решается непосредственно с дробными степенями. Проведено численное исследование указанных задач. Временные зависимости напряжения и контактного напряжения в стержне, соответствующие первой и второй задачам, проанализированы для различных значений реологических параметров порядков дробных производных и времени релаксации. Исследования показали, что стержень не прилипает к стенке ни при каких значениях реологических параметров. В задаче о распространении волн напряжений получены асимптотические решения вблизи волнового фронта и при малых значениях времени. Показано, что данная модель может описывать как диффузионные, так и волновые явления, протекающие в вязкоупругих материалах. Все зависит от соотношения порядков производных, стоящих слева и справа в реологическом уравнении.  [c.281]

Упругость и вязкость комбинируются в веществе простейшими способами. А. Введение. В упругом теле компоненты малых деформаций являются линейными функциями компонент напряжений. Поведение вещества называется в общем случае вязкам, если скорости необратимых перемещений точек относительно друг друга возрастают с ростом напряжений, вызывающих деформацию вещества. Таким образом, вязкое вещество деформируется при тем больших значениях скоростей деформации, чем больше напряжения, причем простейшим случаем служит идеально вязкое вещество, у которого компоненты скоростей необратимых деформаций возрастают пропорционально соответствуюияим компонентам напряжений. Вязкость твердых веществ становится заметной при повышении температуры. Одним из обычных примеров этого служит подвешенный вертикально прямой стеклянный стержень, нагруженный грузом при температуре, приближающейся к температуре размягчения стекла. При этом наблюдается непрерывное опускание груза, стержень же необратимо удлиняется с тем большей скоростью (пропорционально увеличивающейся с увеличением груза), чем больше груз. В этом параграфе вначале рассматривается несколько типов таких тел, которые можно назвать простейшими идеальными композитными телами, а именно тела, у которых свойства идеальной упругости и вязкости проявляются одновременно и в простейшем сочетании. Примеры такого рода рассматриваются также с целью лучшего уяснения более общих явлений, наблюдаемых в поведении твердых тел при повышенных температурах, как, например, медленной ползучести податливых металлов или поликристаллических твердых тел, находящихся под действием напряжений в течение продолжительного времени. Эти примеры рассмотрены далее при более точных предположениях.  [c.201]

В связи с задачами о температурных напряжениях, вызываемых установившимся, не зависящим от времени распределением температуры, см. Мелан Э., П а р к у с Г., Температурные напряжения, вызванные стационарными температурными полями, Физматгиз, М., 1958. В этой книге содержится обширный обзор по теории, основанной на классических постулатах о линейности соотношений между напряжениями и деформациями с неизменными значениями упругих и температурных констант материала. В ней описаны температурные напряжения в двумерном и трехмерном случаях — в дисках, пластинках, телах вращения и т. п. Ее продолжением служит книга Паркус Г., Неустановившиеся температурные напряжения, Физматгиз, М., 1963, где рассматриваются температурные напряжения в переходных температурных полях, а также имеется небольшой обзор по температурным напряжениям в вязко-упругих и упруго-пластичных средах.  [c.466]


Смотреть страницы где упоминается термин Линейное упругое и вязко-упругое тело : [c.55]    [c.4]    [c.22]    [c.290]    [c.141]    [c.32]    [c.281]    [c.479]    [c.547]    [c.312]    [c.127]   
Смотреть главы в:

Дифракция упругих волн  -> Линейное упругое и вязко-упругое тело



ПОИСК



Вязко-упругие тела

Вязко-упругость

Вязко-упругость линейная

Линейно-деформируемое упруго-вязкое релаксирующее тело

Линейно-деформируемые упруго-вязкие и вязко-пластические тела

Линейно-упругое тело

Линейное упругое тело и линейная вязкая жидкость

Сложные линейные тела (линейная вязко-упругость)

Упругие тела

Упругости линейная



© 2025 Mash-xxl.info Реклама на сайте