Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обобщенно-вязкая среда

ТЕЧЕНИЕ ОБОБЩЕННО ВЯЗКОЙ СРЕДЫ В ЦИЛИНДРИЧЕСКОЙ ТРУБЕ  [c.433]

Установившееся течение обобщенно-вязкой среды в трубе. В предыдущих главах при изучении равновесных состояний несжимаемых упругих или вязких тел считались спра ведливыми линейные соотношения между напряжениями и деформациями или напряжениями и скоростями деформаций соответственно. Рассмотрим теперь зависящее от скорости течение сред при более общем условии, — что скорость сдвига представляет собой известную функцию напряжения сдвига. В качестве примера выберем установившееся спокойное течение такой обобщенно-вязкой среды в прямой цилиндрической трубе и найдем распределение скоростей в сечении трубы и градиент давления, обеспечивающий через трубу заданное значение расхода ).  [c.433]


Течение обобщенно-вязкой среды в цилиндрической трубе 435  [c.435]

Обобщенно-вязкая среда 433 Обобщенное пластичное тело Прандтля 56D Объемное расширение 24, 25 Огибающая Мора с затупленным углом 583, 586, 590 Огибающие Мора прямолинейные 534 Оператор Лапласа 221, 429, 546, 599 Опускание и поднимание земной поверхности 345 Осадка берега континента 282, 284 Осевая симметрия 237 Осесимметричное распределение напряжений 287  [c.855]

Сплошную среду, описываемую соотношением (II.82), называют обобщенной вязко-упругой средой.  [c.63]

Обобщением вязкоупругой среды является одна из моделей двухкомпонентной смесн, при этом рассматривается модель смеси из двух упругих вязких компонент, движение которой описывается уравнениями и соотношениями, выведенными в работе [31].  [c.154]

Обобщением формулы (1.42) является выражение совместной плотности вероятности обобщенных координат для системы с п степенями свободы при наличии потенциала упругих сил. Стационарное распределение обобщенных координат дискретной системы в вязкой среде не зависит от инерционных сил [1, 2] и определяется лишь упругим потенциалом и диссипативными свойствами среды. Уравнения колебаний безмассовой системы можно записать в форме  [c.19]

Обобщенная линейная среда. Более сложные модели позволяют лучше приблизиться к механическим свойствам реальных материалов. Эти модели образуются сочетанием упругих и вязких элементов с различными коэффициентами упругости и вязкости. Наиболее простая из таких моделей, содержащая лишь первые производные по времени, показана на рис. 5 она содержит три параметра Еу, Е , Ц и называется иногда обобщенной линейной средой. Закон деформации этой среды можно вывести из законов деформации простых элементов /, II, III  [c.137]

Интегральные ядра становятся убывающими по степенному закону, и представляют законы реологии для Лагранжевых частиц. Соответствующие законы движения приобретают вид уравнений движения для обобщенной вязко-упругой среды.  [c.258]

Формулы (146), (147), (151) имеют важное значение в теории упругости, гидродинамике и других разделах механики сплошных сред. В теории упругости тензор напряжений Р заменяется линейной функцией тензора деформаций [обобщенный закон Гука (1635—1703)], в гидродинамике вязкой жидкости — также линейной функцией тензора скоростей деформаций (обобщенный закон Ньютона). Покажем это на простом примере вязкой несжимаемой жидкости.  [c.255]


Таким образом, обобщенную диффузионную силу можно рассматривать как обусловленную межмолекулярным взаимодействием внешнюю силу, приложенную к компонентам раствора. Эта сила является причиной диффузии. Кроме диффузионной силы, на частицы среды действуют вязкие силы, препятствующие движению. Равенство диффузионной и вязкой сил в стационарном состоянии приводит к постоянству скорости диффузии. Оценим величину диффузионных сил. Для идеальных систем имеем  [c.217]

Для жидкостей и газов такой фундаментальной гипотезой служит обобщение на случай произвольного движения этих сред закона вязкого трения, выраженного формулой (1.11). Чтобы подойти к обоснованию этого обобщения, сформулируем некоторые известные данные о свойствах жидких и газовых сред  [c.79]

Для жидкостей и газов такой фундаментальной гипотезой служит обобщение на случай произвольного движения этих сред закона вязкого трения, выраженного формулой (1-20).  [c.85]

Материалы в сверхпластичном состоянии занимают промежуточное положение между твердым телом, находящимся в пластичном состоянии, и вязкой жидкостью, т. е. являются вязко-пластичными телами. В работе О. М. Смирнова [72] предложена обобщенная модель упруго-вязкопластичной среды для описания реологических свойств материалов, находящихся в состоянии сверхпластичности.  [c.24]

В общем случае поведения материала под нагрузкой изменение напряжений и деформаций во времени определяется их функциональной связью, которая может быть представлена связью напряжений, деформаций и их производных по времени. Частными случаями такой связи являются линейная связь этих параметров, соответствующая обобщенной модели линейной вязко-упругой среды, и нелинейная связь трех параметров из полного набора переменных, используемая для обобщения экспериментальных результатов и аналитического представления поведения материала под нагрузкой в теориях упрочнения, старения и течения.  [c.16]

Выбор в качестве точки разложения момента измерения и принятие линейной зависимости между коэффициентами разложения приводит к обобщенному уравнению связи напряжений и деформаций для линейной вязко-упругой среды [114, 178]  [c.18]

Среди сил, действующих на механическую колебательную систему, имеются силы неупругого, чаще всего вязкого, сопротивления, зависящие от обобщенных скоростей q , q ,. . ., Если эти силы линейно зависят от обобщенных скоростей, то они могут быть выражены производными  [c.13]

Как известно, любой деформируемый металл может быть представлен в виде некоего механического аналога, включающего набор элементарных моделей - упругости, вязкости и пластичности. Наиболее точно и полно поведение деформируемого тела во всем его многообразии отражает обобщенная среда, представленная на рис. 1.7, где вязкий элемент моделирующий диффузионные релаксационные процессы, включен последовательно с жесткостью  [c.41]

Для определения плотности распределения времен релаксации f[X) воспользуемся обобщенной реологической моделью среды Кельвина (рис.4.5), имеющей в своем составе совокупность вязких элементов, которые при нагружении системы внешней силой обеспечивают релаксацию напряжений. В принципе можно пользоваться уравнениями любой деформируемой среды, которые содержат ДА). Система уравнений, описывающая среду Кельвина, имеет вид  [c.158]

Уравнение (5) характеризует реологическое состояние среды, в которой при постоянной деформации напряжение релаксирует до нуля по экспоненциальному закону. Уравнение (6) описывает деформацию среды с последействием. В этой среде при мгновенном снятии напряжений деформация экспоненциально убывает до нуля. Уравнение (7) соответствует деформации сложной среды с релаксацией напряжения и последействием. Следует отметить, что в литературе деформацию упругого последействия часто называют эластической. Если она достигает очень высоких значений, ее общепринято именовать высокоэластической. Аналогично уравнениям (5)—(7) можно составить уравнение модели вязко-упругого тела с любым (конечным или бесконечным) набором времен релаксации и последействия. Естественным обобщением модельной теории вязко-упругой среды является интегральная теория вязко-упру-гости, в которой спектры времен релаксации и последействия могут быть как дискретными (тогда реологическое поведение тела можно описать соответствующей моделью), так и непрерывными. Изложение этой теории описано, например, в монографии Д. Бленда Теория линейной вязкоупругости (Издательство Мир , М. 1965).  [c.16]


Близким по механизму к только что рассмотренному движению вязкой жидкости сквозь тонкую щель между параллельными плоскостями является фильтрационное движение вязких жидкостей сквозь пористые среды. Лежащий в основе теории этих движений закон был открыт в середине прошлого века известным французским гидравликом Дарси на основании проведенных им опытов ), хотя по своей сущности закон этот представляет простое и естественное обобщение линейных зависимостей (153) средней скорости от градиента давления.  [c.411]

В случае структурной вязкости эта мощность расходуется на 1) вязкое сопротивление дисперсной среды, 2) взаимодействие взвешенных частиц с ламинарным потоком, 3) установление изменений в структуре. С другой стороны, изменение структуры может уменьшить величину взаимодействия, так что в результате получится уменьшение вязкости с увеличением скорости сдвига. Это обычное обобщение поведения ньютоновской жидкости.  [c.305]

Другое направление в построении определяющих соотношений для описания больших деформаций металлов в динамике с учетом вязких и релаксационных свойств развивается в работах [44, 69, 82, 113, 154]. Оно основано на специальном обобщении определяющих соотношений модели Максвелла путем введения релаксации эффективных упругих деформаций. При этом полная система уравнений деформирования среды является квазилинейной гиперболической. Для ее решения эффективно применяются методы характеристик и распада разрыва [69, 113, 192], метод расщепления [114].  [c.22]

Комбинации упругих и вязких элементов позволяют удовлетворительно описать процесс деформации вязко-упругих материалов (полимеры, бетоны и т. д.). Трехэлементная модель с переменными параметрами (рис. И, а) является общей моделью вязко-упругого материала. Она приводится к модели Фойгта при j = oo и к модели Максвелла при Е2—О. Обобщенные модели среды Максвелла или среды Кельвина можно рассматривать как трехэлементную модель с переменными параметрами. При этом среда обладает мгновенно-упругим поведением и задерлианной упругостью соответствующие модули  [c.51]

В опытах с водой имеет место турбулентный режим течения. Поэтому для обобщения опытных данных -может быть использована за1Висимость (3-39). При использовании В качестве рабочей жидкости вязкой среды — масла, движущегося в прямоугольном канале малого поперечного сечения, наблюдается вязкостный режим течения.  [c.171]

Завалищин Станислав Тимофеевич, доктор физико-математиче-ских наук, профессор. Заведующий сектором нелинейного анализа Института математики и механики УрО РАН. Известный специалист в области управления движением систем с импульсной структурой. Разработал новый подход к построению общей теории линейных систем, опирающийся на аппарат обобщенных функций построил теорию аналитического конструирования импульсных регуляторов, основанную на новом понятии импульсного синтеза и импульсно-скользяще-го режима. Разработал теорию динамических систем с умножением импульсных воздействий на разрывные реализации функций фазовых координат. На этой основе исследовал класс нерегулярных задач оптимизации Лагранжа и решил ряд актуальных оптимизационных задач квантовой механики, динамики летательных аппаратов, механики космических полетов, имеющих оптимальные импульсные решения. Ряд из этих результатов нашел применение в опытно-конструкторских изысканиях по созданию новой техники. В последнее время развивал новое научное направление, связанное с энергетической оптимизацией движения тел и мобильных манипуляционных систем в вязкой среде.  [c.223]

Вместе с тем реологические модели жидкостей могут быть классифицированы по присущим им свойствам, что позволяет производить определенные обобщения. Наиболее простую классификацию предложил Д. Додж. В зависимости от характера кривой течения, т. е. вида уравнения т = / (y), неньютоновск е среды делят на 3 группы вязкие среды, у которых скорость сдвига зависит только от приложенных сдвиговых напряжений среды, реологические характеристики которых зависят от времени (здесь скорость сдвига определяется не только величиной касательного напряжения, но и продолжительностью его действия) эластичные среды, обладающие свойствами как жидкости, так и твердого тела и частично проявляющие упругое восстановление формы после снятия напряжения.  [c.82]

Дальнейшее обобщение линейной теории вязкоупругости состоит в переходе к нелинейным уравнениям вида (10.41) или (10.42), т. е. к соотношениям указанного вида при нелинейных операторах Р и R. Нелинейная теория вязкоупругостн позволяет получить достаточно хорошее описание ползучести бетона и полимеров при различных режимах, в том числе неизотермических. В то же время этой теорией не охватываются необратимые процессы, протекающие мгновенно (атермическая пластичность) такие явления, как было указано, характерны в первую очередь для металлов. Тела, обладающие упругостью, вязкостью и пластичностью, описываются теорией упруго-вязко-пластических сред. Реологические уравнения этой теории уже не могут быть представлены в виде (10.41) или (10.42) (даже при нелинейных операторах Р и R ) подобно тому, как соотношения между напряжениями и деформациями для упруго-пластического тела нельзя записать в виде конечных (функциональных) связей. В рамках упомянутой теории и следует искать описание поведения металлов при достаточно высоких температурах.  [c.754]


Трение при несовершенной упругости (рис. 3). В 1939 г. было высказано мнение [6], что сила трения твердых тел обусловлена реологическими свойствами последних. В дальнейшем это положение получило развитие в работах отечественных и зарубежных ученых [19]. К наиболее интересным исследованиям в этом направлении относятся работы А. Ю. Ишлинского и И. В. Крагельского [7], В. С. Щедрова [8], Д. М. Толстого [9], Барвела и Рабиновича [10]. С помогцьго уравнения вязко-упругой среды Максвелла—Ишлинского получила теоретическое объяснение обобщенная экспериментальная зависимость силы внешнего трения от постоянной скорости [11] (рис. 3).  [c.178]

Для определения локальных характеристик движения и теплообмена жидкостей и газов используются уравнения, следующие из основных физических законов сохранения массы, количества движения, энергии в сочетании с обобщенным законом вязкого течения Ньютона и законом теплопроводности Фурье. Это приводит к уравнениям неразрывности, движения и энергии, которые дополняются функциями свойств жидкости от температуры и давления. При отсутствии турбулентности в химически однородных однофазных изотропных средах полученная система уравнений является замкнутой. Эти уравнения справедливы и для описания мгновенных характеристик течения в пределах микромасщтаба турбулентного потока.  [c.230]

Вязкоупругими будем называть сплошные среды, у которых сопротивление действию напряжений зависит от скорости, что связано с рассеиванием механической энергии в результате взаимодействия упругой основы с вязким и квазивязким течениями жидких и ква-зижидких компонентов среды. Таким образом, вязкоупругость — это обобщение понятий упругости и вязкости. Идеальным упругим элементом является пружина, а идеальным вязким элементом — амортизатор.  [c.5]

При выводе этого уравнения в исходной системе уравнений использовалось, кроме уравнения сохранения массы и количества движения для однородной газожидкостной смеси, уравнение Херинга-Флина, характеризующее колебание пузырьков с учетом диссипации энергии на вязкие потери и акустическое излучение. Как справедливо замечено в [36], попытка такой записи уравнения состояния газожидкостной смеси является некорректной, так как рассматривает колебание одиночного пузырька в бесконечной среде несжимаемой жидкости и не учитывает, таким образом, влияние колебания близлежащих пузырьков друг на друга. В этой же работе в качестве уравнений состояния среды используются обобщенные уравнения Рэлея-Ламба. От аналогичных уравнений для одиночного пузырька они отличаются поправками на газосодержание /3. В [36] с помощью уравнений сохранения, уравнений Рэлея-Ламба и уравнения политропы получено уравнение БК в виде  [c.45]

Значения коэффициентов переноса и термодинамических характеристик материала или среды, вообще говоря, могут быть различными для разных точек тела. С изменением иотенциадов переноса они оретерпе-вают иногда существенное изменение. Решение большого количества вопросов в области науки и техники может быть значительно уточнено путем введения поправок, возникающих в связи с переменным характером коэффициентов. Необходимбсть проведения такой работы особенно остро стала сказываться в связи с широким внедрением в различные отрасли техники высокоинтенсивных процессов. Отметим также, что путем соответствующих подстановок многие задачи конвективной диффузии и теплопроводности, гидродинамики вязкой жидкости и др. могут быть сведены к дифференциальным уравнениям типа теплопроводности с переменными коэффициентами. Это указывает на необходимость накопления и обобщения полученных результатов решения неоднородных и нелинейных уравнений тепло- и массопроводности, а также дальнейшего развития методов решения этих уравнений.  [c.465]

Перечислим некоторые результаты, полученные автором [1—12] таким способом формула для силы, действующей на малую дырку в упругом теле (теория дырок) теория конфигурационных (лобовых) сил, действующих на твердое тело, движущееся по поверхности или в глубине другого твердого тела формула для силы взаимодействия двух электронов, движущихся в среде с околосветовой или сверхсветовой скоростью (обобщение закона Кулона) формула для конфигурационной силы фильтрации, действующей на источник жидкости в пористой среде основные формулы нелинейной механики разрушения для потока энергии в конец трещины в различных средах (степенное нелинейно-упругое тело, упругопластическое тело, идеально пластическое тело, вязкоупругое или вязкое тело) формула для потока энергии на динамической поверхности разрушения в хрупком теле (теория действия взрыва в хрупких средах) и др.  [c.360]

Формальная теория вязко-упругого поведения была предложена в работе Д. Олдройда [26], посвященной изложению инвариантного описания движения сплошной среды при наличии конечных упругих деформаций. Им было показано, что инвариантная процедура формальных обобщений простых реологических зависимостей на случай произвольных деформаций упруго-вязкдй сплошной среды является отнюдь не однозначной. В качестве простого примера справедливости этого положения им была рассмотрена простая задача о движении жидкости с одним временем релаксации и одним временем запаздывания в зазоре коаксиально-цилиндрического вискозиметра при различных обобщениях реологического уравнения, построенного для случая малых деформаций. Оказалось, что в зависимости от обобщения этой модели эффект нормальных напряжений существенно изменяется.  [c.31]

Среди новых полу эмпирических методов привлекает внимание метод Д. Б. Сполдинга ), основанный на применении формулы Прандтля для напряжения трения и соответствующих ее обобщений на формулы тепломас-сопереноса с введением коррективов при помощи турбулентных чисел Прандтля и Шмидта. В этом методе применяется составной закон пути смешения, состоящий из линейного возрастания в пристеночной области и постоянства во внешней области пограничного слоя, а вместо схемы вязкого подслоя используется представление о непрерывном влиянии вязкости на турбулентный обмен во всей пристеночной области, правда, лишь в том приближенном виде, который был установлен Ван-Драйстом ), внесшим поправку в линейный закон изменения пути смешения. Распределение полного напряжения трения в сечениях слоя принимается в форме линейной зависимости от производной давления dpidx  [c.726]

Несколько выделяющийся раздел гидродинамики вязкой жидкости представляет собой теория движения грунтовых вод, т. е. гидродинамика пористых сред. В ее основе лежит установленный в 50-х годах французским инженером А. Дарси линейный закон фильтрации (закон Дарси), утверждающий пропорциональность скорости фильтрации градиенту напора Гидравлическая теория установившегося движения грунтовых вод, эквивалентная обычной гидравлике труб и каналов, была развита французским инженером Ж. Дюпюи . Дальнейший прогресс теории фильтрации в XIX в. связан с трудами Ф. Форхгеймера, перенесшего закон Дарси на пространственные течения и сведшего плановые задачи теории напорного и безнапорного движения грунтовых вод в однородной среде к интегрированию двумерного уравнения Лапласа. Обобщение гидравлической теории на неустаповивтие-ся течения было осуществлено в самом начале XX в. Ж. Буссинеском .  [c.73]



Смотреть страницы где упоминается термин Обобщенно-вязкая среда : [c.857]    [c.634]    [c.9]    [c.11]    [c.240]    [c.139]   
Пластичность и разрушение твердых тел Том2 (1969) -- [ c.433 ]



ПОИСК



Обобщения

Среда вязкая

Течение обобщенно-вязкой среды в труб

Течение обобщенно-вязкой среды в цилиндрической трубе

Установившееся течение обобщенно-вязкой среды в трубе



© 2025 Mash-xxl.info Реклама на сайте