Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обобщение канонических уравнений движения

ОБОБЩЕНИЕ КАНОНИЧЕСКИХ УРАВНЕНИЙ ДВИЖЕНИЯ  [c.147]

Обобщение канонических уравнений движения  [c.147]

На примере циклических координа.т мы видели (см. 8.4), что успех интегрирования систем дифференциальных уравнений, описывающих движение механических систем, в значительной мере зависит от удачного выбора лагранжевых координат. При переходе от одних лагранжевых координат к другим будут по определенному закону изменяться и обобщенные импульсы, так что в новых фазовых переменных уравнения движения вновь примут вид канонических уравнений Гамильтона. Произвольные преобразования фазовых координат таким свойством, вообще говоря, обладать не будут. Интегральный инвариант Пуанкаре (определение 9.5,1) позволяет, подходя с единых позиций как к преобразованию лагранжевых координат, так и обобщенных импульсов, выделить специальный класс преобразований фазовых переменных, не нарушающих структуру канонических уравнений движения.  [c.680]


Из сказанного следует, что если все координаты механической систе.мы циклические и связи стационарные, то канонические уравнения движения интегрируются. Обобщенные координаты в этом случае будут линейными функциями времени.  [c.92]

Рассмотрим теперь канонические уравнения движения голо-номной системы материальных точек в неголономной системе координат. Как и выше, введем обобщенные импульсы  [c.161]

Гамильтоновы (канонические) уравнения движения. Перейдем теперь к нахождению подходящей формы уравнений движении консервативной системы, когда состояние движения в какой-либо момент рассматривается как определяемое конфигурацией и обобщенными количествами движения, а не конфигурацией и обобщенными скоростями. Соответствующие формы кинетической энергии мы обозначим, как и в предыдущем параграфе, через Т и Т.  [c.203]

Заметим теперь, что члены потенциала V, не зависящие от обобщенных координат 6, Ф, <1 (но зависящие все же от времени), ничего не прибавят в формулах, выражающих канонические уравнения движения.  [c.320]

Канонические уравнения. Обобщенный интеграл уравнения движения. Отметим, что уравнения движения среды при использовании формулировок и выражений вариационного принципа могут быть представлены в форме, близкой к каноническим уравнениям.  [c.460]

Этот пример показывает, что ничего нового по сравнению с уравнениями Лагранжа канонические уравнения движения не представляют. Действительно, и уравнения (33.11), и уравнения (33.14) совпадают с соответствующими уравнениями движения Лагранжа и Ньютона, а остальные уравнения (т. е. уравнения (33.12), (33 15)) являются следствиями определения обобщенных импульсов. И вообще, трудно указать такую динамическую задачу, которую нельзя было бы решить, пользуясь уравнениями Лагранжа, и для решения которой следовало бы обратиться к каноническим уравнениям движения (33.4). Действительное преимущество метода Гамильтона, если говорить о самой классической механике, состоит в том, что он позволяет существенно упростить рассмотрение некоторых общих проблем механики (например, проблемы отыскания интегралов движения). Но главное преимущество метода Гамильтона состоит все-таки в том, что он дает необходимую математическую основу для построения квантовой механики и статистической физики.  [c.191]


В 28 показано, что уравнения Лагранжа (28.11) инвариантны относительно точечного преобразования (28.17), связывающего любые два набора обобщенных координат системы д, Q. Разумеется, что при любом преобразовании (28.17) сохраняют свою форму и канонические уравнения движения (33.4). Однако уравнения Гамильтона допускают более широкий класс преобразований. Это связано с тем, что в методе Гамильтона роль независимых переменных наряду с обобщенными координатами выполняют и обобщенные импульсы р . Поэтому преобразования, сохраняющие форму канонических уравнений движения (33.4), относятся к классу преобразований  [c.198]

При понижении порядка системы дифференциальных уравнений проблемы трех тел до четырех можно использовать произвольные канонические переменные р. Необходимо только выразить через эти переменные интегралы площадей, и понижение порядка будет выполняться с большими или меньшими затруднениями таким же путем, как и выше. Автор показал, как можно составить канонические уравнения движения с тремя степенями свободы для случая плоского движения, если в качестве дг-коорди-нат использовать расстояния трех тел от общего центра инерции при надлежащем выборе соответствующих канонических переменных [321. Этот метод имеет свои преимущества, так как возмущающая функция оказывается алгебраической функцией переменных, в то время как оскулирующие элементы входят в возмущающую функцию трансцендентным образом. Эти преимущества достигаются и в том случае, когда вместо расстояний трех тел от общего центра инерции в качестве координат выбираются взаимные расстояния. Вывод дифференциальных уравнений оказывается точно таким же, что и при использовании в качестве обобщенных координат расстояний от центра инерции. Понижение порядка системы дифференциальных уравнений движения в этом случае до восьмого в изящной форме было выполнено Брунсом [33].  [c.230]

Из канонических уравнений движения выводятся теоремы об изменении обобщенных мер движения. Преобразования в этом случае такие же, как и в случае уравнений Лагранжа. Они представлены на схемах 28 и 29.  [c.278]

Пример 93. Материальная точка массой т движется под действием силы притяжения к некоторому центру О. Зная, что силовая функция поля равна U (г), где /- — расстояние от точки до центра О, найти канонические уравнения и уравнения ее движения, применив метод интегрирования Остроградского—Якоби, Решение. Выберем за обобщенные координаты материальной точки ее полярные координаты г и ф. Так как составляющие скорости точки, выраженные н полярных координатах, определяются по формулам  [c.387]

Следствие 9.2.4. Обобщенный импульс р , соответствующий циклической координате д,, сохраняет в силу канонических уравнений Гамильтона во все время движения постоянное значение.  [c.634]

Исключим обобщенные скорости из основных величин, входящих в дифференциальные уравнения движения, и введем в них обобщенные импульсы. Конечно, при этом изменится вид соответствующей функции. Поэтому функции канонических переменных обозначаются ниже дужкой над буквой, обозначающей функцию. Например, функция Лагранжа в канонических переменных обозначается А, обобщенные силы в канонических переменных обозначаются Qj и т. д. Но функция Гамильтона Н в канонических переменных обозначается Н.  [c.145]

Обобщенный импульс, соответствующий циклической координате во время движения сохраняет постоянное значение. Действительно, из канонических уравнений следует  [c.93]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]


Общая параметрическая формулировка канонических уравнений в форме (6.10.15) с теоретической точки зрения обладает серьезными преимуществами по сравнению с другими формулировками. Ее можно считать наиболее выразительной формой канонических уравнений. Она совсем по-новому освещает роль консервативных систем. Заметим, что после преобразования времени t в одну из механических переменных любая система становится консервативной. Обобщенная функция Гамильтона К не зависит явно от независимой переменной т, и поэтому наша система в расширенном фазовом пространстве становится консервативной. Движение фазовой жидкости является установившимся, и каждая частица жидкости все время находится на какой-то определенной поверхности  [c.221]

Уравнения Уиттекера и Якоби. Пусть движение системы описывается каноническими уравнениями (12). Если функция Гамильтона не зависит явно от времени, то существует обобщенный интеграл энергии  [c.289]

Уравнения движения точки Р могут быть записаны в форме канонических уравнений Гамильтона. Функция Гамильтона явно от времени не зависит, поэтому существует обобщенный интеграл энергии — интеграл Якоби  [c.326]

В уравнении Гамильтона переменными, которые определяют движение механической системы, являются обобщенные координаты q и обобщенные моменты р. Гамильтонова функция W(p, q), которая входит в гамильтоновы уравнения, обычно является функцией обеих этих переменных. Если мы преобразуем переменные q и р в новые переменные q и р посредством какого-либо произвольного преобразования, общая форма гамильтоновых уравнений изменится. Однако Якоби показал, что существует некоторое преобразование, отличающееся тем свойством, что оно оставляет форму этих уравнений неизменной. Так как уравнения Гамильтона часто называются каноническими уравнениями динамики, то указанным преобразованиям было дано наименование канонических преобразований. Канонические преобразования представляют собой специальный случай касательного преобразования. Касательное преобразование в трехмерном пространстве определяется так  [c.915]

Гамильтоновы системы являются наиболее подходящей моделью для описания движений в динамических системах с потенциальными полями, когда существует так называемая характеристическая функция, зависящая от обобщенных координат и скоростей (импульсов) [159], которая порождает дифференциальные уравнения движения поэтому можно сказать, что она исчерпывающим образом описывает движения в динамических системах. Асимптотическое интегрирование канонических систем так или иначе связано с нахождение. периодических или условно-периодических решений, с изучением окрестности таких решении и с проблемой устойчивости частных решений гамильтоновых систем [12, 91, 160].  [c.195]

Пусть состояние движения механической системы, на которую наложены голономные идеальные связи, определяется координатами Лагранжа ди 2,Яи и обобщенными импульсами ри Р2,. .., Рк. Рассмотрим преобразование к новой системе переменных 1, С 2. , Ри Рг,..., Рк, определяющих состояние движения той же механической системы. Преобразование называют каноническим, или контактным, если после преобразования любые канонические уравнения Гамильтона переходят в канонические уравнения для новых переменных.  [c.473]

Как известно, основные результаты (законы, теоремы, следствия) классической механики получаются из различных модификаций и преобразований второго закона Ньютона. В частности, уравнения Лагранжа в обобщенных координатах и канонические уравнения Гамильтона являются естественными обобщениями закона движения Ньютона на механические системы с геометрическими связями.  [c.11]

При исследовании движения механических систем методом канонических уравнений Гамильтона полезно придерживаться следующего порядка вычислений. Как и в методе уравнений Лагранжа 2-го рода, прежде всего устанавливаем число степеней свободы рассматриваемой механической системы точек. Затем выбираем независимые обобщенные координаты и составляем выражения для кинетической и потенциальной энергии в функции обобщенных координат и обобщенных скоростей. Составив функцию L = T+U T—V, по формулам (62) находим обобщенные импульсы pi, р2,. .Ps. Разрешая полученную систему линейных уравнений относительно обобщенных скоростей, мы можем по формуле (64) найти И в функции канонических переменных qu 2,. , qs, pu р2,. .., Ps H времени t Зная функцию H = H qu Ръ Ps, 0. можно написать канонические уравнения (67) и затем интегрировать полученную систему уравнений.  [c.515]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]


Конечно, это легко было предвидеть, так как и исходные уравнения движения (1.1) записываются в форме канонических уравнений с функцией Гамильтона (см. определение обобщенной потенциальной энергии п. 5.3)  [c.564]

Как уже отмечалось, уравнения Лагранжа представляют собой систему 5 дифференциальных уравнений второго порядка относительно 5 обобщенных координат д как функций времени. Этим уравнениям можно сопоставить эквивалентную систему 2з уравнений первого порядка, где в качестве неизвестных взяты 2в функций времени 5 обобщенных координат и обобщенных импульсов р. Переменные д, р называются каноническими, а соответствующая система 2з уравнений движения называется каноническими уравнениями Гамильтона.  [c.384]

Пусть I,,. .., / — обобщенные импульсы (действия), канонически сопряженные углам Oi,. .., Ojt. Это означает, что уравнения движения в этих переменных имеют вид  [c.23]

Если построена обобщенная функция Гамильтона и уравнения движения непотенциальной системы приведены к гамильтоновой форме, то для таких систем справедливы все основные теоремы и методы гамильтоновой механики потенциальных систем, в частности теорема Остроградского — Гамильтона — Якоби об интегрировании канонической системы уравнений. На доказательстве этих утверждений не останавливаемся, поскольку оно проводится так же, как указано, например, в работе [16].  [c.169]

Канонические уравнения движения могут быть получены с помощью той процедуры, которая применялась нами в 7.1. Мы будем считать, что есть функция обобщенных координат hiXjJ), удельных канонических импульсов nh Xj,t), производ-  [c.390]

Если уравнения движения диссипативных систем свести к гамильтоновой форме, то можно воспользоваться известными методами для исследования диссипативных систем. Это, в частности, позволит указать один из способов обоснования построения кинетического уравнения для непотенциальных систем и построить континуальную модель двухкомпонентного потока. Для этого в первую очередь необходимо построить обобщенную функцию Гамильтона Н (соответственно обобщенную функцию Лагранжа L ), которая учитывала бы диссипативные 9илы и давала бы возможность представить канонические уравнения движения в гамильтоновой форме.  [c.157]

Задаем вид преобразования переменных, коэффициентами которого являются неизвестные функции, подлежащие определению. Затем, предполагая, что канонические уравнения движения непотенциальной системы в новых переменных имеют гамильтонову форму, находим обобщенный гамильтониан, зависящий от искомых функций. Эти функции определяем из системы дифференциальных уравнений, полученных при отождествлении канонических уравнений движения рассматриваемой непотенциальной системы и канонических уравнений движения, соответствующих построенной функции Гамильтона, после перехода в этих уравнениях к старым переменным. Таким образом находим явный вид преобразования, обобщенную функцию Гамильтона, которая позволяет привести канонические уравнения движения непотенциальной системы к гамильтоновой форме, и обобщенную функцию Лагранжа, которая дает возможность привести уравнения движения непотенциаль-  [c.159]

Записанный так интегральный инвариант Пуанкаре — Картана для консервативных систем отличается от интегрального И11ва-рианта в общем случае движения в потенциальном поле в трех отношениях во-первых, суммирование в первом члене ведется не от единицы до л, а от двух до п во-вторых, вместо гамильтониана Я в этом выражении стоит функция К, которая получилась, когда интеграл энергии (136) был разрешен относительно импульса Pi (см. выражение (138)) в-третьнх, роль t играет теперь <7i. Таким образом, воспользовавшись тем, что для консервативных и обобщенно консервативных систем гамильтониан не зависит явно от времени, мы исключили время из выражения интегрального инварианта Пуанкаре — Картана. Теперь совершенно так же, как в общих случаях движения систем в потенциальном поле из интегрального инварианта Пуанкаре — Картана следуют канонические уравнения Гамильтона, для консервативных и обобщенно консервативных систем из интегрального инварианта (139) следуют уравнения  [c.328]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

В 1951 г. А. А. Космодемьянский несколько видоизменил свой вывод основных теорем механики тела переменной массы по сравнению с 1946 г. Новые дифференциальные уравнения движения тела переменной массы были составлены для случаев, когда могло иметь место и относительное движение изменяющих масс по внутренним каналам тела. Кроме того, Космоде-242 мьянский вывел уравнения движения тела переменной массы в обобщенных координатах, которые по внешнему виду отличались от уравнений Лагранжа второго рода тем, что в правых частях к обычным обобщенным силам присоединялись реактивные силы. Там же он выводит канонические уравнения для тела переменной массы.  [c.242]

В 7.4 идеология лагранжевой и гамильтоновой механики обобщается на случай гинердвижения тела неременной массы. Получены уравнения движения в обобщенных независимых координатах нри наличии идеальных голономных связей. Вторая часть параграфа отведена гамильтоновой форме записи уравнений гинердвижения тела переменной массы (в канонических переменных).  [c.207]

Легко видеть, что оба уравнения имеют одинаковую аналитическую структуру, причем натяжению Т, направленному по касательной к кривой равновесия, в первом уравнении отвечает скоросты , направленная по касательной к траектории точки, во втором уравнении, силе Р, отнесенной к единице длины нити, уравнения (7.1) отвечает сила — Р/гп, отнесенная к единице массы точки, уравнения (7.2). Этой аналогией объясняется сходство между другими формами уравнений равновесия нити и уравнений движения материальной точки. Так, например, уравнениям равновесия нити в естественных осях, в обобщенных (криволинейных) координатах, в канонической форме Гамильтона отвечают соответствующие уравнения движения материальной точки. Можно привести ег другие формы уравнений равновесия нити, имеющие соответствующие аналоги в динамике, например уравнение в частных производных в форме Гамильтона — Остроградского (впервые оно было получено акад. В. Г. Ишменецким  [c.39]


Как мы видели, движение механичесжнх систем можно описать с помощью различных дифференциальных уравнений уравнений Ньютона, уравнений Лагранжа с реакциями связей, уравнений Лагранжа в обобщенных координатах, канонических уравнений Гамильтона и уравнения Гамильтона — Якоби.  [c.449]

Симплектическое слоепие. Обобщение теоремы Дарбу. Если скобка Пуассона является вырожденной, то пуассоново многообразие (фазовое пространство) расслаивается на симплектические слои листы), ограничение пуассоновой структуры на которые уже невырождено. Эти слои, как правило, представляют собой общий уровень всех функций Казимира. На слое справедлива теорема Дарбу и каноническая форма уравнений движения. Однако для приложений сведение к такой системе не всегда бывает необходимым, поскольку как правило, ведет к потере алгебраичности дифференциальных уравнений и ограничениям в использовании геометрических и топологических методов исследования.  [c.31]

Новая форма уравнений движения элемента сплошной среды дала возможность выразить компоненты тензора Гамильтона через квазиплотность функции Лагранжа. Свертывание этого тензора позволило найти плотность функции Гамильтона. Однако этот процесс привел к выражению плотности (квазиплотности) функции Гамильтона, встречающемуся в монографиях по континуальной механике, где плотность функции Гамильтона вводится посредством определения. Путем обобщения классической методики найдены системы квазиканонических и канонических уравнений динамики сплошной среды. Указаны естественные краевые условия.  [c.4]

Задаем вид обобщенной функции Лагранжа (Гамильтона), зависящей от искомых функций, предполагая, что уравнения движения, определяемые обобщенной функцией Лагранжа, являются уравнениями Лагранжа второго рода с нулевой правой частью (канонические уравнения имеют гамильтонову форму). Отождествляя полученные уравнения и уравнения движения непотенциальиой системы, находим систему дифференциальных уравнений для определения неизвестных функций. Решая эту систему, находим искомые функции, а затем определяем явный вид обобщенных функций Лагранжа и Гамильтона и преобразования переменных.  [c.160]


Смотреть страницы где упоминается термин Обобщение канонических уравнений движения : [c.98]    [c.208]    [c.302]    [c.591]    [c.220]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Обобщение канонических уравнений движения



ПОИСК



Вид канонический

Канонические уравнения уравнения канонические

Каноническое уравнение движени

Обобщения

Уравнения движения канонические

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте