Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тела Движение в потоке по плоскому

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]


Решение задач безвихревого обтекания цилиндрических тел, помещенных между плоскопараллельными границами потока вязкой жидкости, этой воображаемой идеальной жидкостью может быть произведено обычными методами, изложенными в гл. V настоящей книги. В этом смысле рассматриваемое воображаемое движение можно назвать вязкой аналогией плоского безвихревого потока идеальной жидкости. Однако стоит отметить интересную особенность такого рода обтекания, заключающуюся в том, что для определения поля давлений нельзя уже пользоваться уравнением Бернулли, которого в этом случае, как и в других случаях вязких потоков, просто нет. Следует оговориться, что предыдущие рассуждения, использованные при выводе решений (152) и вытекающих из него следствий (153) — (155), теряют свою силу вблизи поверхности помещенного в поток цилиндрического тела, однако область эта по сравнению с размерами тела невелика, и ее влиянием на потенциальный поток можно пренебречь. Как показывают наблюдения, этот эффект становится заметным в кормовой области обтекаемого тела и в следе за ним. Аналогичные явления имеют место в течениях вязкой жидкости в пограничных слоях, теории которых посвящена следующая глава.  [c.410]

Новое допущение приводит к упрощению уравнений движения и позволяет рассчитывать на получение хороших результатов при сравнительно небольших математических вычислениях. Кроме того, оно дает простое правило подобия для трансзвукового потока, обтекающего тела или крылья, в известном смысле подобных по толщине, кривизне и распределению угла атаки. Например, в случае плоского потока, обтекающего симметричный профиль, получается правило, согласно которому для получения подобных условий в потоках, обтекающих профили с подобным распределением толщин, следует величину 1 — М, т. е. разность между единицей и действительным числом Маха полета, менять пропорционально отношению толщины к хорде в степени две трети .  [c.67]

Метод отражений. Как указано ранее, формы тела или границы потока в теории потенциальных течений представляются просто поверхностями тока, геометрически подобными очертаниям твердых границ, имеющих практический интерес поскольку задача напряжений сдвига у границы не рассматривается, то никаких трудностей из-за этого представления не возникает, ибо поток не проникает ни через эти поверхности, ни через твердые границы. Однако, как видно из уравнений для функций потенциала или тока, математическое поле беспредельно, и здесь существует кажущееся поле потока по обе стороны любой выбранной поверхности тока, например, в случае моделирования потока, обтекающего шар, исследование уравнений покажет, что неразрывное поле движения распространяется на произвольно большое расстояние, выравниваясь после шарообразной поверхности тока к диполю в центре. Поскольку любое другое замкнутое тело должно также включать особенности, подобным же образом поля потока будут существовать по обеим сторонам границы и поток будет всегда заканчиваться у внутренних особенностей. Эта система внутренних особенностей считается как бы отражением их наружной части. Если может быть найдено расположение, природа и напряжение этих отраженных особенностей, их потенциалы вместе с потенциалами механизмов течения, воспроизводящих наружный поток, дадут полный потенциал для потока вокруг тела. Оценка этих потенциалов, однако, вообще является трудной задачей. Только для случаев шарообразной, круглой или плоской границ имеются способы, пригодные для определения отражений.  [c.111]


Ниже изложен аналитический метод расчета обтекания осесимметричных тел и плоских контуров потоком идеального газа при больших сверхзвуковых скоростях. Метод основан на разложении решения уравнений газовой динамики в ряды по степеням параметра = (7 — 1)/(7+1), где 7 - отношение теплоемкостей, и по идее аналогичен методу разложения по степеням где Ке - число Рейнольдса, решения уравнений движения  [c.280]

В работе изучается задача о движении тела в таком силовом поле, при котором линия действия силы, приложенной к телу, не меняет своей ориентации относительно тела, а лишь может смещаться параллельно самой себе в зависимости от фазовых переменных. Подобные условия возникают при движении пластины, так сказать, с большими углами атаки, в среде при струйном обтекании [64, 162, 183, 184] (М. И. Гуревич, Л. И. Седов, С. А. Чаплыгин) или при отрывном [172, 173] (В. Г. Табачников). Таким образом, основным объектом исследования является семейство тел, часть поверхности которых имеет плоский участок (пластину), обтекаемый средой по законам струйного обтекания. При этом поток среды предполагается однородным, в том смысле, что если движущееся тело свободное, то среда на бесконечности покоится, а если (частично) закрепленное (в частности, вращается вокруг неподвижной точки), то скорость набегающего потока на бесконечности постоянна. В данном случае содержательным примером является упомянутая выше основополагающая в рамках данной работы задача С. А. Чаплыгина о движении пластины бесконечной длины.  [c.18]

Для выяснения условий, при соблюдении которых уравнения движения будут одинаковы, или движения подобны, напишем уравнения Стокса (III.41) для случая плоского потока в безразмерном виде. В качестве масштаба длины выберем какой-либо характерный размер тела I (хорда крыла, диаметр или радиус трубы и др.), а в качестве масштабов скоростей, давлений, плотностей, температур и пр. — их характерные значения (на бесконечности, средние по объемным, массовым расходам и пр.).  [c.226]

Поскольку JV представляет собой объем тела, растворяющийся с единицы поверхности за единицу времени, а коэффициент а = ]/и где V — активационный объем дислокаций при пла-. стическом течении, по существу численно может быть охарактеризован как максимально возможная динамическая плотность дислокаций (т. е. плотность их в момент течения), то выражение (211) формально можно интерпретировать следующим образом. Дополнительный поток дислокаций при хемомеханическом эффекте образуется в результате насыщения дислокациями поверхностного слоя до максимально возможной динамической плотности, а затем стравливания этого слоя со скоростью химического растворения. Насыщение дислокациями растворяющегося слоя возможно ввиду несравнимых величин скоростей размножения и движения дислокаций, с одной стороны, и растворения тела с другой стороны. Так, при обычных значениях скоростей коррозии стравливание одного моноатомного слоя занимает секунды и более секунды, а дислокационные процессы совершаются с околозвуковыми скоростями. Образование поверхностных источников дислокаций в процессе реализации хемомеханического эффекта приводит к быстрому насыщению поверхностного слоя дислокациями, что создает условия для множественного скольжения (в том числе поперечного скольжения дислокаций) и, следовательно, для разрушения ранее сформировавшихся плоских скоплений, т. е. для релаксации микронапряжений и разупрочнения.  [c.126]

В 1910 г. С. А. Чаплыгин начинает цикл работ по теории крыла. Результаты исследования аэродинамических сил, действующих на крыло самолета, Чаплыгин изложил в работе О давлении плоско-параллельного потока на преграждающие тела (к теории аэроплана) (1910), а также в докладе Результаты теоретических исследований о движении аэропланов , сделанном в ноябре 1910 г. на заседании Московского общества воздухоплавания и изданном в 1911 г. Применение теории струй позволило оценить величину сил, действующих на простейшее крыло — пластинку. Чаплыгин ссылается на соответствующие работы Релея, Жуковского и на свою работу О газовых струях , в которой он дал формулы для  [c.276]


Наибольший интерес представляет плоское безвихревое движение, для которого, кроме потенциала скоростей, существует еще функция тока, введенная впервые Лагранжам в 1781 г. кинематическая интерпретация функции тока, связанная с понятием линии тока, была дана значительно позднее (в 1864 г.) Рэнкиным. Наличие этих двух функций— потенциала скоростей и функции тока, удовлетворяющих в отдельности уравнениям Лапласа, позволило свести решение гидродинамической задачи к разысканию одной комплексной функции — комплексного потенциала. Подробное изложение этого метода, весьма близкого к современному, можно найти в двадцать первой лекции классических Лекций по математической физике (ч. 1, Механика) Кирхгоффа (1876). Отдельные задачи плоского безвихревого потока решались и ранее самим Кирхгоффом в 1845 г. и Гельмгольцем в 1868 г. Заметим, что с математической стороны эти задачи эквивалентны аналогичным задачам электростатики. Наряду с плоским стационарным безвихревым движением были изучена некоторые простейшие задачи нестационарного дви кения (Рэлей в 1878 г., Лэмб в 1875 г. и др.). Особенно больших успехов метод комплексной переменной достиг в теории обтекания тел со срывом струй, созданной трудами Гельмгольца, Кирхгоффа и Жуковского. Подлинного своего расцвета плоская задача безвихревого стационарного и нестационарного движения достигла в первую четверть нашего столетия в замечательных работах ученых московской школы, о чем еще будет речь впереди.  [c.25]

В коллективной публикации [20] в предположении неидеальности теплового контакта и теплообмена между взаимодействующими поверхностями и внешней средой по закону Ньютона, изучается влияние процесса теплообразования на распределение контактного давления и температуры в случае плоско-параллельного движения упругого тела вдоль плоской поверхности жесткого теплопроводного основания. Исследования показали, что при отсутствии поступательного перемещения и одинаковых теплофизических свойствах тел поля температуры и тепловых потоков в них совпадают. Наличие поступательного движения приводит к существенному перераспределению потоков тепла, что находит свое отражение в поведении контактного давления и температуры.  [c.480]

При спуске тела в атмосфере в ряде случаях вследствие действия момента, вызванного малой асимметрией, возникает явление, обусловленное гироскопическим взаимодействием нутационного движения и движения по крену [20]. Это явление получило название резонанса крена или лунного резонанса. Тело совершает колебания вокруг собственной продольной оси относительно набегающего потока. Тело обращено одной стороной к набегающему потоку и средняя угловая скорость собственного вращения близка к нулю Л 0. При резонансе крена, вызванном поперечным смещением центра масс с оси симметрии тела ( т, т ф 0), возникает явление, аналогичное плоскому нутационному движению тела под действием восстанавливающего момента, роль которого играет момент крена от нормальной аэродинамической силы  [c.120]

Воспользуемся установленной в [1, 2, 10] эквивалентностью задачи об обтекании тонких тел потоком газа с большой сверхзвуковой скоростью и задачи о плоском неустановившемся движении газа (закон плоских сечений). Для затупленного тонкого тела эквивалентная задача о неустановившемся движении состоит в следующем. В покоившемся газе в некоторый момент времени выделяется на плоскости (на прямой) энергия Е и газу сообщается импульс / по нормали к этой плоскости (прямой). Энергия Е и импульс / отнесены соответственно к единице площади и единице длины. В этот же момент времени в газе из места выделения энергии начинает расширяться со скоростью II плоский (круглый цилиндрический) поршень. Требуется определить возникающее движение. Для перехода к сформулированной задаче о неустановившемся движении от задачи об установившемся обтекании тела в направлении оси х со скоростью V следует полагать Е = X,  [c.294]

Если число Маха набегающего потока настолько мало, что течение во всей области является дозвуковым, то поле скоростей обязательно потенциально. Вследствие того, что движение плоское, циркуляция скорости по контуру, охватывающему цилиндр, не изменяется по его длине, так что поверхность, образованная сходящими с тела линиями тока, не является поверхностью тангенциального разрыва (вихревой пеленой) давления с обеих сторон поверхности тангенциального разрыва одинаковы, а, следовательно, при одинаковом значении константы в интеграле Бернулли одинаковы и модули скорости с обеих сторон в плоском движении это означает и непрерывность вектора скорости.  [c.334]

В третьем издании введение и первые семь глав курса, содержащие по преимуществу основные, классические вопросы механики жидкости и газа (кинематика, общие уравнения и теоремы динамики, одномерный газовый поток, плоское и пространственное безвихревые движения несжимаемой жидкости и идеального газа), подверглись, главным образом, методической переработке и получили, сравнительно с другими главами, лишь незначительные дополнения (теория сверхзвукового диффузора, одномерные волны в газе, теория решеток произвольного профиля, законы подобия плоских пространственных тонких тел, теория конического скачка).  [c.2]

СИЛА [Магнуса действует на тело, вращающееся в набегающем на него потоке жидкости или газа, направленная перпендикулярно к потоку и оси вращения нормального давления — часть силы взаимодействия тел, направленной по нормали к поверхности их соприкосновения оптическая линзы в воздухе — величина, обратная фокусному расстоянию линзы поверхностная приложена к поверхности тела подъемная — составляющая полной силы давления на движущееся в газе или жидкости тело, направленная перпендикулярно к скорости тела равнодействую1цая эквивалентна действию на тело системы сил света — отношение светового потока, распространяющегося от источника в рассматриваемом направлении внутри малого телесного угла, к этому углу термоэлект-родви ку цая возникает в электрической цени, составленной из разнородных проводников, контакты между которыми имеют различную температуру тока — отношение электрического заряда, переносимого через сечение проводника за малый интервал времени, к /гому интервалу трения (препятствует относительному перемещению соприкасающихся тел, слоев жидкости или газа качения действует на цилиндрическое или шарообразное тело, катящееся без скольжения цо плоской или изогнутой поверхности покоя имеет максимальное значение составляющей взаимодействующих тел и направлена по касательной к поверхности соприкосновения скольжения действует при движении соприкасающихся тел и направлена по касательной к поверхности их соприкосновения) тяжести — равнодействующая силы гравитационного взаимодействия тела с Землей и центробежной силы инерции, обусловленной вращением Земли фотоэлектродвижушая — ЭДС, возникающая в полупроводнике при поглощении в нем электромагнитного излучения электродвижущая (ЭДС) — характеристика источника тока, определяемая работой, затрачиваемой на перемещение единичного положительного заряда по замкнутому контуру]  [c.275]


Рассмотрим обтекание тела врагцения или плоского контура сверхзвуковым потоком. Движение будем рассматривать в криволинейной системе координат, в которой положение точки М в потоке определяется ее расстоянием у = НМ по нормали от поверхности тела и длиной дуги X = ОН обтекаемого контура, отсчитываемой от некоторой  [c.38]

Указанное свойство позволяет в рассматриваемом случае плоского стационарного движения жидкости в области пограничного слоя заменить в правой части первого уравнения системы (3) частную производную др1дх на полную производную dpidx. Согласно тому же свойству, распределение давления р (х) вдоль пограничного слоя совпадает с распределением давления во внешнем безвихревом потоке. Это распределение по теореме Бернулли ( 20), справедливой для набегающего на тело безвихревого потока идеальной жидкости, можно связать со скоростью во внешнем потоке. Благодаря тонкости пограничного слоя, можно снести эту скорость на поверхность тела, положив ее равной той, зависящей только от продольной координаты X скорости скольжения U (х) жидкости по поверхности тела, которая имела бы место в идеальной жидкости, т. е. при отсутствии пограничного  [c.444]

Парадокс Даламбера показывает, что сила сопротивления при движении тела в несжимаемой жидкости с постоянной скоростью происходит в конечном счете лишь от касательных напряжений. Касательные напряжения создают силу сопротивления не только сами по себе, ио и косвенным путем, так как их наличие в жидкости изменяет нормальные напряжения. В результате этих изхменений возникает сопротивление от нормальных напряжений, которое для тел неудобообтекаемых может составлять весьма значительную часть полного сопротивления (например, для плоской пластинки, поставленной перпендикулярно к потоку, сопротивление от нормальных напряжений составляет 100% полного сопротивления). Происхождение сопротивления как от касательных, так и от нормальных напряжений следует искать, как указывает парадокс Даламбера, в том свойстве, которым мы пренебрегали, исходя из гипотезы о потенциальном движении в идеальной жидкости он указывает, что причиной сопротивления при движении в несжимаемой жидкости с постоянной скоростью является лишь вязкость среды. В этом заключается принципиальное значение парадокса Даламбера.  [c.315]

I При числах Маха набегающего потока, больших критического Мкр> около обтекаемого тела развивается местная зона сверхзвуковых скоростей, которая обычно заканчивается скачком уплотнения. Скачок уплотнения, взаимодействуя с вязким пограничным слоем, во многих случаях вызывает отрыв потока от поверхности тела. Таким образом, при М > Мкр получаются дополнительные потери полного давления как в скачке уплотнения, так и в вызванной им аоне отрыва. Эти потери полного давления связаны с приростом сопротивления тела, который может быть весьма значительным. Попытка оценить порядок части сопротивления плоского профиля, связанной с потерями полного давления в скачке уплотнения при М > Мкр> была сделана Я. М. Серебрийским и С. А. Христиановичем (1944), получившими некоторую гипотетическую оценку роста волнового сопротивления. Была рассмотрена потеря количества движения в струйке газа, проходящей через прямой скачок уплотнения, при условии, что давление за скачком должно восстанавливаться до давления в набегающем потоке. Полученное выражение для волновых потерь в струйке было разложено в ряд по степеням (Мх — 1), где Мх — число Маха перед скачком. В связи с тем, что указанное разложение начинается с члена, пропорционального (М1— 1) , Я. М. Серебрийским и С. А. Хри-  [c.100]

При течении жидкости вдоль плоской поверхности тела частицы жидкости, непосредственно соприкасающиеся с поверхностью црилипают к ней вследствие адсорбции. Поскольку всякая реальная жидкость (капельная жидкость или газ) обладает вязкостью, то слой жидкости, контактирующий с прилипшим слоем, тормозится последним. Однако сверху на этот второй слой в силу той же вязкости действует третий слой, побуждающий второй слой к движению. В результате второй слой двил<ется с небольшой скоростью. Третий слой испытывает снизу тормозящее действие второго слоя, а сверху — движущее действие четвертого слоя третий слой движется с несколько большей скоростью, чем второй. Слои скользят друг по другу, как и воображаемые коаксиальные цилиндры при течении жидкости в трубе. Чем больше расстояние у от стенки (рис. 12-8), тем скорость слоя больше. Однако увеличение скорости имеет предел, равный значению скорости хюо в набегающем потоке. Следовательно, вблизи поверхности тела имеется область, в которой скорость жидкости меняется от значения ш= 0 на поверхности до значения на  [c.252]

Предполол<им, что задано плоское обтекание крылового профиля реальной (вязкой) жидкостью, сопровождаемое образованием на теле пограничного слоя, а за телом — аэродинамического следа. Наряду с этим действительным потоком в пограничном слое рассмотрим в той же области воображаемый потенциальный поток, который являлся бы непрерывным продолжением действительного внешнего потенциального потока на область, занятую погра-ничным слоем. По известному свойству пограничного слоя давления в построенном таким образом потенциальном потоке, а следовательно, и продольные скорости должны совпадать с давлениями и скоростями в потоке на внешней границе пограничного слоя. Вместо характерного для движения в пограничном слое убывания скорости от некоторого значения на внешней границе слоя до нулевого значения на поверхности крыла, в эквивалентном по давлениям потенциальном потоке повсюду на данной нормали будет одинаковая скорость, равная скорости на внешней границе слоя. Отсюда следует, что рассматриваемый потенциальный поток, обладающий тем же объемным расходом через сечение рассматриваемой струйки, что и действительный поток в пограничном слое, не сможет заполнить всю область пограничного слоя (включая в понятие пограничного слоя и аэродинамический след).  [c.775]

В таком случае можно разделить поверхность тела на участки, размеры которых, с одной стороны, настолько малы, что их можно приближенно считать плоскими, но, с другой стороны, асе же велики по сравнению с длиной волны. Тогда можно считать, что каждый такой участок излучает при своем движении плоскую волну, скорость жидкости в которой равка просто нормальной компоненте и скорости данного участка поверхности. Н средний поток энергии в плоской волне равен (см. 65) pu где V — скорость л<идкости в волне. Подст.шляя v = iin и интегрируя по всей поверхности тела, приходим к результату, что средняя излучаемая телом в единицу времени в ввде звуковых волн энергия, т. е. полная интенсивность излучаемого  [c.394]

Др. особенность У.—возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропори, квадрату частоты, УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы) поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты вообще говоря, она мала и составляет долго % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавито1(ия. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см . На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с неск. Вт/см могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич, кавитация широко применяется в технол. процессах при этом пользуются У. низких частот.  [c.215]


При обтекании газом тупого тела с осью симметрии, направленной вдоль скорости невозмущенного потока, на поверхности тела образуется пограничный слой, симметричный относительно оси тела. Линии такого движения лежат в меридиональных плоскостях. В Л. 20, 105] показано, что если x5i и d idaldx малы (х — кривизна меридионального профиля), то уравнения движения и энергии для пограничного слоя имеют такой же вид, как и в случае обтекания газом плоской поверхности, если координата х направлена вдоль контура меридионального сечения, а у — по нормали к нему.  [c.23]

Задачи вязкого течения жидкостей и газов в пограничном слое при внешнем обтекании тел. Этот класс объединяет все задачи ламинарного и турбулентного, стационарного и нестационарного режимов течения однородных и миогокомионентных газов и жидкостей при свободном и вынужденном обтекании плоских и пространственных тел с произвольным распределением скоростей в потенциальном или завихренном потоке при произвольных условиях на границах и на поверхностях разрывов, Задачи данного класса описываются системой дифференциальных уравнений параболического типа, содержащей по крайней мере одну одностороннюю пространственную или временную координату, вдоль которой протекающий процесс зависит только от условий на одной из границ рассматриваемой области. Например, для задач теплообмена при неустановившемся ламинарном или турбулентном двумерном движении однородного газа система, состоящая из уравнений неразрывности движения и энергии, имеет вид  [c.184]

Задача о произвольной нестационарной деформации профилей или их движения при постоянной циркуляции в потенциальном потоке сводится к вычислению квадратурами типа (3.13) дополнительной касательной к контуру слагающей Vg скорости по ее заданной нормальной слагающей Vfi иди же к решению соответствующей неоднородной задачи относительно функции тока или потенциала течения вытеснения . Первая задача такого рода — о плоском движении жидкости в треугольной полости вращающегося тела — была решена Н. Е. Жуковским в 1885 г. (эта задача имеет отношение к течению во вращающейся радиальной решетке с прямыми лопатками). Вращение одиночного тонкого профиля и двух профилей тандем было изучено Л. И. Седовым в 1935 г. затем им же был дан общий подход к решению подобных задач в рамках теории тонкого профиля. Общие свойства потока через вращающуюся круговую решетку и, в частности, ее конформное отображение на прямую рассмотрел П. А. Вальтер в 1926 г. Основные задачи обтекания таких решеток решены Г. И. Майка-паром (1949, 1953, 1958, 1966), Л. А. Дорфманом (1956), Т. С. Соломаховой  [c.125]

Фундаментальные идеи Жуковского и Чаплыгина были в дальнейшем развиты их учениками и последователями. Значительное углубление гидродинамика плоского безвихревого потока получила в работах М. В. Келдыша, М. А. Лаврентьева, Л. И. Седова и других советских ученых, продолжавших с успе.чом применять в теории крыла методы теории функций комплексного переменного. Исследования Жуковского по обтеканию тел с отрывом струй были в дальнейшем развиты в работах Л . А. Лаврентьева, А. И. Некрасова, Я. И. Секерж-Зеньковича, М. И. Гуревича. За рубежом плоская задача об отрывном движении идеальной несжимаемой жидкости по схеме Кирхгофа была систематически исследована Леви-Чивита. Соответствующая пространственная задача был для некоторых простейших случаев решена Трефтцем. Принципиально новые схемы отрывного обтекания тел были предложены Д. Рябушинским н Д. Эфросом в связи с рассмотрением явления кавитации.  [c.33]

Весьма существен тот факт, что единственной силой, действующей на профиль в плоскопараллельном безвихревом потоке идеальной несжимаемой жидкости, является перпендикулярная направлению набегающего потока илн, в обращенном движении, поперечная направлению движения профиля сила, которая может быть названа подъемной или поддерживающеей силон, так как именно эта сила обеспечивает подъем самолета в воздух, поддерживает его крыло прн горизонтальном полете. Подчеркнем отсутствие составляющей силы, направленной вдоль движения жидкости, или, что все равно, направления движения тела по отношению к жидкости, — силы сопротивления. Это представляет частный случай общего парадокса Даламбера. Теорема Жуковского подтверждает парадокс Даламбера для любого плоского безвихревого движения идеальной жидкости как при наличии присоединенных вихрей, так и при отсутствии их. Общее доказательство парадокса для пространственного течения будет дано в гл. VH.  [c.245]


Смотреть страницы где упоминается термин Тела Движение в потоке по плоскому : [c.256]    [c.202]    [c.245]    [c.135]    [c.146]    [c.87]    [c.105]    [c.510]    [c.26]    [c.119]    [c.122]    [c.781]   
Вибрации в технике Справочник Том 4 (1981) -- [ c.0 ]



ПОИСК



Движение плоское

Плоское движение тела

Поток см плоский

Поток—см. Движение



© 2025 Mash-xxl.info Реклама на сайте