Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм процесса

Вычисление энергии, рассеянной при трении, требует подробных знаний механизма процесса и лел<ит вне области термодинамики. Термодинамический анализ главным образом направлен на вычисление максимальной механической работы, совершенной процессом. Максимальная механическая работа получается в результате обратимого процесса, для которого F = 0. При незначительных изменениях кинетической и потенциальной энергии уравнение (1-12) превращается в следующее выражение для максимальной или обратимой механической работы  [c.40]


Вычисление выполненной работы при изотермическом расширении или сжатии проиллюстрировано в примере 1, где особое внимание обращено на зависимость выполненной работы от механизма процесса. Если внешнее давление ра постоянно, то процесс необратим, и работа может быть вычислена по уравнению  [c.42]

МЕХАНИЗМ ПРОЦЕССА КРИСТАЛЛИЗАЦИИ  [c.46]

По механизму процесса различают химическую и электрохимическую коррозию металлов  [c.12]

На начальной стадии окисления чистого металла образуется компактная однослойная окалина, плотно прилегающая к окисляющемуся металлу. Этот процесс описывается во времени параболическим законом, что определяется диффузионным механизмом процесса. По мере протекания процесса толщина слоя окалины достигает определенной критической величины, при которой потеря металла на границе металл—окалина не компенсируется более пластической деформацией окалины.  [c.74]

Поведение сплавов при образовании на них отдельных слоев соединений двух металлов (окислов Me и Mt) или слоя смеси этих соединений может быть описано для диффузионного механизма процесса окалинообразования на железной основе теорией В. И. Тихомирова Эта теория относится к области окисления 3  [c.97]

Естественно, что коррозию металла в электролите как электрохимический процесс можно рассматривать лишь при значительном преобладании доли электрохимического механизма процесса, т. е. когда Оэ = х > где = ЮО — Дэ = х.  [c.281]

Электрохимический механизм процесса коррозионного растрескивания обусловлен возникновением на поверхности металлов в растворах электролитов неоднородностей. Эти неоднородности объясняются  [c.107]

Изменение свойств а разрушение неметаллических материалов под действием окружающей среды отличается от коррозии металлов как 1Ю механизму процесса, так и по характеру взаимодействия с рабочими средами.  [c.29]

Итак, в пересыщенном твердом растворе протекают процессы, связанные с переходом его в более устойчивое, стабильное состояние, т. е. процессы старения. Механизм процесса следующий вначале в определенных участках кристаллической решетки пересыщенного твердого раствора происходит скопление атомов (В). Затем протекает формирование новой (свойственной выделяющейся фазе) кристаллической решетки. Однако решетка фазы остается кристаллографически близкой к решетке твердого раствора (когерентная связь). Далее происходит отрыв решеток и образование самостоятельных дисперсных частиц фазы. В заключение частицы фазы укрупняются (коагуляция).  [c.211]


Таким образом, любое дифференциальное уравнение (или система уравнений) является математической моделью целого класса явлений. Следовательно, под классом понимается такая совокупность явлений, которая характеризуется одинаковым механизмом процессов и одинаковой физической природой.  [c.409]

ИССЛЕДОВАНИЕ МЕХАНИЗМА ПРОЦЕССА  [c.144]

Анализ механизма процессов обработки заготовок при изготовлении сосудов и аппаратов позволяет разделить все многообразие технологических операций на три группы  [c.367]

В зависимости от реальных условий в стандартах устанавливают показатели, нормы, характеристики (механизма, процесса) в виде ступеней качества с дифференцированными сроками введения. Примеры ОС приведены в работах 110, 16]. ОС необходимо проводить своевременно, чтобы не сдерживать выпуск изделий улучшенного качества.  [c.63]

Известно, что при практической реализации тех или иных теоретических разработок в них зачастую вносятся существенные коррективы, даже если какая-либо концепция или теория казались, на первый взгляд, абсолютно фундаментальными и решающими в полном объеме конкретную проблему. Особенно это касается исследований, направленных на обеспечение надежного функционирования сложных технологических систем, основу которых составляют разнообразные гетерогенные материалы, многостадийные процессы добычи и переработки углеводородного сырья, жесткие режимы движения рабочего продукта внутри оборудования оболочкового типа, испытывающего воздействие коррозионных сред и механических нагрузок. Учесть влияние всех факторов, которые играют существенную роль в механизмах процессов, происходящих в таких системах, чрезвычайно сложно, а чаще всего невозможно. Поэтому в данном случае теоретические разработки могут служить лишь в качестве подхода к решению проблемы. Достижение же окончательного решения возможно только на пути использования всего накопленного практического опыта в той области, в которой проблема возникла.  [c.5]

Потенциодинамическим методом получали кинетические параметры электродного процесса при различных pH, на основании которых рассчитывали значения критериев реакции катодного выделения водорода. В результате анализа соответствия величин критериев требованиям той или иной теории установили влияние ингибитора ИКУ-1 на механизм процесса в НС1 и реагенте РВ-ЗП-1. Относительная ошибка определения плотности тока коррозии стали в сериях из пяти опытов составляла не более 2%.  [c.284]

Доподлинно неизвестно, каковы механизмы старения человеческого организма, но на данный момент мы знаем кое-что о механизмах старения и разрушения металлов. Рассмотрим явление пластической деформации. На настоящий момент существует множество конкурирующих гипотез его описания. Однако, на уровне эксперимента для множества металлов проявляются одни и те же общие механизмы процесса пластической деформации, причем они идентичны как для массивных, так и для достаточно тонких образцов.  [c.107]

Основная задача при расчете эжектора заключается в определении параметров смеси газов на выходе из смесительной камеры по параметрам газов до смешения. Замечательным является тот факт, что для определения параметров потока на выходе из камеры рассмотрение самого процесса смешения не обязательно. Нет необходимости также предварительно вычислять потери, возникающие в процессе смешения, и анализировать механизм процесса передачи энергии.  [c.505]

Учение о теплообмене является частью общего учения о теплоте, основы которого заложены М. В. Ломоносовым. На основе корпускулярной теории строения вещества М. В. Ломоносов дал правильное представление о механизме процесса передачи теплоты. В работе Размышления о причине теплоты и холода (1750) Ломоносов так поясняет явление теплопроводности Если более теплое тело А находится в соприкосновении с другим телом В, менее теплым, то находящиеся в точках соприкосновения частицы тела А, вращаясь быстрее, чем соседние с ними частицы тела В, более быстрым вращением ускоряют вращательное движение частиц тела В, т. е. передают им часть своего движения... .  [c.242]

Аналитический метод получения расчетных формул для теплоотдачи в трубе интересен тем, что он раскрывает органическую связь процессов теплообмена с условиями течения жидкости и таким образом способствует глубокому пониманию механизма процесса теплообмена между потоком и стенкой в условиях внутренней задачи.  [c.335]


Исходя из данных о действительном механизме процесса и условий, в которых протекает процесс, всегда можно схематизировать каждый из реальных процессов так, чтобы сделать возможным его термодинамический анализ. Следует отметить, что для вычисления работы и количества теплоты, составляющих главное содержание приложений термодинамики, не обязательно знать все особенности кинетики реального процесса. Вполне достаточно, чтобы наряду с внешними условиями, в которых протекает процесс, были известны конечные и, само собой разумеется, начальные состояния всех участвующих в процессе тел. С помощью функций состояния U, I, S, F, Ф, частные производные которых, как было показано ранее в 3.1, характеризуют физические свойства тел, можно анализировать любые как обратимые, так и необратимые процессы. Использование дифференциальных уравнений термодинамики, связывающих частные производные функций состояния с термическими параметрами и их производными, составляет суть термодинамического анализа.  [c.158]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

Вместе с тем имеются сомнительные (с точки зрения возможного механизма процесса) различия в структуре формул. Вряд ли можно объяснить, что переход от колонны диаметром 63,5 мм к колонне чуть большего диаметра принципиально изменит характер влияния таких параметров, как плотность газа и частиц, их диаметр, т. е. если, согла сно (2.47), при псевдоожиженни слоя в колонне D/,>63,5 мм степень расширения прямо пропорциональна диаметру частиц, плотность их материала в степени 0,376, и обратно пропорциональна плотности газа в степени 0,126, то, согласно (2.48), в колонне / ь 63,5 мм степень расширения не зависит от диаметра частиц, обратно пропорциональна их плотности в степени 0,166 и прямо пропорциональна плотности газа в степени 0,083.  [c.53]

Проблема адсорбции пара на твердых поверхностях играет важную роль в процессах хроматографического разделения, ионного обмена и химического катализа. В этой системе представляет интерес соотношение между количеством адсорбированного вещества и давлением в системе при данной температуре в условиях равновесия. Такое соотношение впервые вывел Лангмюр на основании кинетического анализа скоростей адсорбции и десорбции. Условия равновесия были установлены путем приравнивания скоростей двух противоположных процессов. Однако полученные Лангмюром изотермы адсорбции не зависят от скоростей и механизма процесса и могут быть целиком получены на основе критерия равновесия, выраженного уравнением (8-17), или с помощью положения, что химический потенциал компонента должен быть один и тот же в обеих фазах.  [c.269]

X у (средняя область концентраций). На поверхности этой системы могут образовываться а) отдельные слои соединений двух металлов б) слой смеси окислов в) слой двойного соединения типа шпинели, иапример MtMe On- Поведение сплавов при образовании на них однородных слоев (области концентраций 1 и 2), когда ионы легирующего металла растворимы в поверхностном соединении основного металла, может быть описано для диффузионного механизма процесса теориями Вагнера—Хауффе и Смирнова.  [c.83]

Этот метод может быть использован для определения тока саморастворения (коррозии) металла и установления механизма процесса коррозии металла совпадение величины рассчитанного таким методом коррозионного тока /э = х со значением /опытн. полученным непосредственным определением коррозионных потерь металла (I из Ат), подтверждает электрохимический механизм процесса расхождение этих значений, когда /э = х < /опыта указывает на наличие растворения металла по неэлектрохимическому, т. е. химическому механизму.  [c.286]

При поляризационных измерениях с помощью потенциостата возможно использование автоматической развертки потенциала для его непрерывного смещения с заданной скоростью — потен-циодинамтеский метод. Увеличение скорости измерения потен-циодинамических поляризационных кривых позволяет более тонко изучить механизм процесса (В. М. Княжева, А. И. Голубев и М. X. Кадыров).  [c.458]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]


Микроструктура закрученного потока представляет особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения в камере энергорааделения вихревых труб значительно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций закрученного ограниченного потока всегда трехмерное и имеет особенности, отличающие его от турбулентных характеристик незакрученных течений [15, 18, 30, 181, 196]. На рис. 3.11,а показаны интенсивность турбулентности е закрученного потока в системе координат, связанной с криволинейной линией тока, где — продольная, — поперечная и ц — радиальная составляющие турбулентных пульсаций в зависимости от относительного расстояния до стенки камеры энергоразделения y/R.  [c.115]

Интенсивность внутрнпорового теплообмена. Одной из основных величин, определяющих испарение потока теплоносителя внутри пористых металлов, является интенсивность Ау объемного теплообмена. Выполним приближенную оценку этой величины. Из приведенного ранее физического механизма процесса следует, что основным режимом внутрнпорового теплообмена при движении двухфазного потока в нагреваемых матрицах является передача теплоты от пористого каркаса с температурой Т теплопроводностью через жидкостную микропленку к ее поверхности, имеющей температуру, равную температуре насыщения, где теплота затрачивается на испарение жидкости.  [c.85]

С учетом приведенных в гл. 4 сведений о структуре и теплообмене двухфазного потока внутри проницаемых матриц можно представить следующий механизм процесса. После начала парообразования пар течет сначала отдельными микроструями, которые постепенно заполняют все более мелкие поровые каналы. Жидкость движется в виде постепенно утоняющейся микропленки, которая обволакивает частицы материала и заполняет все сужения и тупиковые поры. Под действием капиллярных сил жидкость в пленке перетекает поперек канала. За счет этого обеспечивается равномерная насыщенность пористой структуры. Такой режим сохраняется до полного испарения всего теплоносителя.  [c.117]

Аналогично рассчитывается массовое паросодержание потока и при конденсации пара внутри охлаждаемого канала с пористым заполнителем. После этого вследствие полной обратимости физического механизма процессов испарения и конденсации потоков внутри канала с проницаемой матрицей расчет изменения давления вдоль конденсирующегося потока может быть произведен с помощью соотношений, приведенных в разд. 4.3. Необходимо учесть только обратное изменение массового па-росодержания вдоль канала.  [c.123]

Рассштрим один из возмовных механизмов процесса перемешивания неравномерно нагретой жидкости пузырями барботируемого газа (обмен ный). Пузырь объемом Уд Н - высота столба жидкости над пузырем), воилывая, увлекает за собой присоединенную массу жидкости где S - коэффициент присоединенной массы. После перехо-  [c.76]

Влияние легирующих добавок в этих средах зачастую иное, чем в водных растворах- возникающие гальванические пары и внешняя поляризация не влияют на скорость коррозии скорости коррозии одинаковы в паровой фазе и в кипящей жидкости. Все эти факты являются сильными аргументами в пользу того, что коррозия протекает не по электрохимическому механизму . Механизм процесса с участием свободных радикалов подтверждается также данными по аналитическому обнаружению радикалов -СС1з, появление которых, видимо, приводит к красному окрашиванию I4 при взаимодействии его с алюминием. Об этом же свидетельствует легкость, G которой добавки многих органических веществ подавляют реакцию (свободные радикалы очень реакционноспособны).  [c.349]

Механизм процессов, приводящих к резкому ускорению коррозии, еще не достаточно ясен. Его объясняют появлением трещин в оксидной пленке вследствие концентрирования напряжений в толще оксида. Однако, когда металл окисляют в кислороде, скорость коррозии не увеличивается, за исключением случаев очень длительной выдержки и очень толстой оксидной плёнки. Оказалось, что ведущую роль играет водород, выделяющийся в результате разложения воды при взаимодействии с металлом, и особенно та его часть, которая растворяется в металле, приводя к более высоким скоростям окиздения [55]. Данные рентгеновских исследований показывают, что в воде на поверхности циркония как до, так и после ускорения коррозии присутствует моноклинный диоксид ZrOj. Имеются также некоторые сведения, что первоначально возникающий оксид имеет тетрагональную структуру [56].,  [c.381]

В терминах электронной теории можно следующим образом охарактеризовать механизм процесса. Электрическое поле падающей волны раскачивает заряженные частицы (электроны), и возникает рассеянное излучение, которое в грубом приближении можно описать полученными ранее соотношениями для гармонического осциллятора, излучающего под действием вынуждающей силы (см. 1.5). В частности, сразу понятно, почему наиболее интенсивно рассеивается коротковолновое излучение. Известно, что интегральная интенсивность излучения диполя пропорциональна четвертой степени частоты (ш lA ). Следовательно, голубой свет рассеивается значительно сильнее красного (Хкр/ гол = 1,6). Индикатриса рассеяния похожа на распределение потока электромагнитной энергии в пространстве (см. 1.5), полученное на основе очевидного положения об отсутствии излучения в направлении движения осциллирующего электрона.  [c.353]

Разберемся подробнее в этом важном вопросе. Соотношение Annl mn указывает, что отношение коэффициентов Эйнштейна для спонтанного и вынужденного переходов при переходе от видимой части спектра (л 10" см) к метровым радиоволнам должно уменьшиться примерно в 10 раз. Поэтому не должна удивлять разница в механизме процессов излучения для этих двух столь различных диапазонов спектра электромагнитных волн.  [c.429]

Эти экспериментальные результаты никак нельзя объяснить, оставаясь в рамках классической физики. Действительно, предположив, что электрон вылетает из металла под действием све ТОБОЙ волны, нужно рассматривать ее как некоторую вынуждающую силу, амплитуда которой должна определять максима.льную скорость вылетевших электронов. Следовате.ньно, Кзщ должно быть пропорциональным световому потоку, а в эксперименте, как уже указывалось, установлено отсутствие такой зависимости. Непонятна также зависимость Уз д от частоты падающего света. Казалось бы, эффект должен иметь резонансный характер и наблюдаться лишь в том случае, когда частота собственных колебаний электрона в металле совпадает с частотой падающего света. Между тем эффект усиливается при v v p, а наблюдавшиеся в некоторых условиях максимумы зависимости силы фототока от частоты облучающего катод света появляются лишь н специальных условиях эксперимента и не должны влиять на установление основного механизма процесса.  [c.433]

Состав образуемой в пористой среде смеси в процессе вытеснения из нее взаимосмешивающихся жидкостей меняется, что обусловливает непрерывное изменение физических свойств этой смеси. Характер изменения во времени состава указанной смеси зависит не только от физико-химических свойств ее компонентов, но и от гидродинамических условий протекания процесса вытеснения. Установлено, что динамика изменения во времени состава образуемой в пористой среде смеси резко влияет на механизм процесса вытеснения из этой среды взаимосмешивающихся жидкостей.  [c.119]


Смотреть страницы где упоминается термин Механизм процесса : [c.208]    [c.103]    [c.109]    [c.409]    [c.362]    [c.435]    [c.40]    [c.112]   
Смотреть главы в:

Гидродинамика и теплообмен при парообразовании издание 3  -> Механизм процесса

Теплообмен при конденсации  -> Механизм процесса

Экспериментальное исследование процессов теплообмена  -> Механизм процесса


Электролитические покрытия металлов (1979) -- [ c.0 ]



ПОИСК



Алабужев, Г. Ф. Копейкин, Ю. П. Цивинский, Исследование рабочего процесса электромеханического молотка с задерживающим механизмом бойка

В иткин. Исследование механизма основных процессов горячего лужения

Влияние кинематических параметров процесса прохождения колебаний на нагрузки в механизмах

Возникновение процесса фосфатирования и механизм образования фосфатной пленки

Динамические процессы при неустановившихся режимах работы механизмов

Диффузионные процессы механизм диффузии

Добрынин, О. Н. Поболъ, Г. И. Фирсов. Моделирование процессов возбуждения колебаний в кулачковых механизмах ткацкого станка

Доля электрохимического механизма коррозионного процесса

Е Классификация коррозионных процессов по механизму протекания

Затухающий процесс движения вибрационного механизма

Изменение положения ведомого звена механизма в процессе изнашивания

Изменение траектории ведомого звена механизма в процессе изнашивания

Изучение механизмов участия океана в процессе глобального теплообмена

Исследование механизма процесса

Колебательные процессы в механизмах

Колебательные процессы катодной области дуги и ее восстановительный механизм

Контроль перемещения механизмов пресса и автоматизация процесса прессования в функции пути

Краткие сведения о механизме процесса химического никелирования

Лабораторная работа 33. Разработка схемы сборочных элементов и технологического процесса сборки узлов и механизмов

Механизм деформирования срезаемого слоя металла и процесс стружкообразования

Механизм зубчато-рычажный с пазовым кулачком смещения ползуна в процессе движения

Механизм зубчато-рычажный с переменным ходом ползуна смещения ползуна в процессе движения

Механизм и модели процесса коррозии

Механизм и температурный уровень процессов возврата и полигонизации

Механизм и температурный уровень процессов рекристаллизации

Механизм и физические основы процесса шлакования — Изучение механизма процесса шлакования в лабораторных условиях

Механизм комбинированного привода с пьезоэлектрическим датчиком для управления процессом шлифования

Механизм коррозионного процесса

Механизм на микроскопическом уровне — Механизм процесса

Механизм процесса КР алюминиевых сплавов

Механизм процесса восстановления хромат-ионо

Механизм процесса выравнивания поверхности металла

Механизм процесса высокочастотной сварки

Механизм процесса действия выравнивающих добаво

Механизм процесса и факторы, влияющие на интенсивность

Механизм процесса контактного выделения металлов

Механизм процесса концентрации в винтовом потоке пульны

Механизм процесса коррозионного растрескивания титановых сплавов

Механизм процесса кристаллизации

Механизм процесса накипеобразования в испарителях морской воды

Механизм процесса обезводороживания стали

Механизм процесса образования губчатых осадков

Механизм процесса перераспределения тока в электролитах

Механизм процесса распределения металла

Механизм процесса теплообмена при пузырьковом и пленочном кипении

Механизм процесса теплообмена при пузырьковом кипении жидкости

Механизм процесса теплопроводности

Механизм процесса электрокристаллизации

Механизм процесса электролитического хромировани

Механизм процесса электрохимического обезжиривания

Механизм процесса. Влияние основных параметров

Механизм процессов химического восстановления металлов

Механизм угольного тензометра процесса прессования сена

Механизм угольного тензометра управления процессом шлифовани

Механизм электрогидравлического для управления процессом шлифования

Механизмы и динамика процессов релаксации растворителей

Механизмы процесса диффузии

Механизмы управления внутриклеточными восстановительными и приспособительными процессами с помощью генерируемых клетками когерентных волн основные гипотезы и их обоснование

Модифицирование - Механизм процесса

Молекулярный механизм диффузионных процессов в полимерах

Ножницы поперечной резки летучие - Автоматизация процесса резания 784 - Механизмы выравнивания

ОРГАНИЗАЦИЯ РАБОТЫ НА ТОПЛИВНЫХ И МАТЕРИАЛЬНЫХ СКЛАДАХ Понятие о технологическом процессе работы складов и использование подъемно-транспортных механизмов

ОСНОВНЫЕ СВЕДЕНИЯ О МАШИНАХ И ПРОЦЕССАХ ИХ ИЗГОТОВЛЕНИЯ Машины, механизмы и детали машин

Определение. Классификация. Особенности. Механизм коррозии. Факторы. Модели. Прогнозирование процесса

Определение. Классификация. Особенности. Механизм. Влияющие факторы. Модели процесса

Определение. Классификация. Особенности. Механизм. Факторы. Модели. Прогнозирование процесса

Определение. Механизм, Особенности процесса

Определение. Особенности. Термодинамика. Механизм, кинетика модели. Классификация и параI метры процесса

Организация процесса проектирования деталей машин и механизмов сельскохозяйственной техники (М. Н. Ерохин)

Особенности механизма процесса теплообмена при кипении растворов и смесей

Процесс зачерпывания сыпучих материалов грейферными механизмами

Процесс работы пневматического механизма

Процесс срабатывания гидравлического механизма

Процессы неуечановиншетося движения механизма передвижения

Процессы неустановившегося движения механизма поворота

Расчеты длительности или интенсивности пускотормозных процесРасчет динамических нагрузок в механизмах при различных процессах нагружения

Режим работ и процессы в механизмах

Роль усталостных процессов в механизме хрупких разрушений металла экранных труб

Самофлюсование Механизм процесса

Сейлер и Дж. Гуменик, мл. Механизм процессов, происходящих в покрытиях

Современные представления о механизме процесса теплообмена в зоне клеевых соединений

ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРОЦЕССА ПОЛУЧЕНИЯ БИМЕТАЛЛОВ Теоретические представления о механизме схватывания металлов

Томашов, Л. П. Вершинина. Исследование кинетики и механизма электродных процессов методом непрерывного обновления поверхности металла под раствором

Три состояния вещества. Механизм процесса кристаллизации

Электродные процессы механизм

Электрохимический механизм процессов саморастворения амальгам

Энергетические условия и механизм процесса кристал

Энергетические условия и механизм процесса кристаллизации



© 2025 Mash-xxl.info Реклама на сайте