Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача к турбулентному потоку при

Теплоотдача к турбулентному потоку газа в трубах при синусоидальном распределении тепловой нагрузки и переменных физических свойствах газа. ....................................................89  [c.348]

Как уже было сказано (см. 52), теоретический подход к расчету теплоотдачи в турбулентном потоке основан на аналогии Рейнольдса, которая выражается формулой (14.61) St = f 2 при Рг = 1. Для потока в трубе эта формула приобретает вид 51= /8, поскольку по определению величины С/ и равны  [c.387]


При вычислении теплоотдачи в турбулентном потоке жидкости в трубе можно принимать двухслойную (Прандтля — Тейлора) или трехслойную (Шваба — Кармана) динамическую схему потока. Предполагается, что в ламинарном подслое перенос тепла и количества движения определяется молекулярным процессом, в турбулентном ядре — молярным перемешиванием, а в переходной области (трехслойная схема) действуют оба механизма переноса. Применительно к высокотеплопроводным жидкостям, когда Рг 1 возникает необходимость учета молекулярного переноса и в области турбулентного ядра (Л. 7. 8]. В литературе при рассмотрении тепловых задач наряду с динамическим слоем вводится понятие о тепловом слое [Л. 1, 2, 6, 11]. Применительно к высокотеплопроводным жидкостям общая теория вопроса была изложена в [Л. 3]. В качестве расчетного выхода Левичем [Л. 3] была рассмотрена суперпозиция двухслойных динамической и тепловой схем потока. Дальнейшее развитие этой теории было сделано Боришанским [Л. 12], рассмотревшим суперпозицию трехслойных динамической и тепловой схем потока. В расчетном плане в этих случаях возникает вопрос  [c.436]

Для пучков, в которых трубы расположены частично в шахматном, а частично — в коридорном порядке, коэффициент теплоотдачи определяется отдельно для каждой части. Коэффициент теплоотдачи а, , Вт/(м -К), при продольном обтекании поверхности нагрева однофазным турбулентным потоком при давлениях и температурах, далеких от критических,  [c.206]

Уравнение энергии для двухфазного потока можно получить таким же образом, как это делается для однофазного турбулентного потока. Рассмотрим теплоотдачу к стационарному двухфазному потоку в круглой трубе, стенка которой на участке а > 0 поддерживается при постоянной температуре. Уравнение энергии рассматриваемого течения получается из баланса энергии для малого элемента объема. С учетом того, что у = и = 0, а из членов, характеризующих турбулентный теплообмен, (ю Т ) — 0 и (и Т ) не зависит от х, уравнение энергии в цилиндрических координатах принимает вид  [c.171]

Таким образом, при возрастании плотности теплового потока коэффициент теплоотдачи в переходной зоне увеличивается не только за счет появления новых центров парообразования, но и вследствие интенсификации переноса теплоты у каждого центра. Аналогичная ситуация складывается в однофазном потоке в переходной области от ламинарного течения к турбулентному зависимость числа Nu от числа Re оказывается более значительной, чем при развитом турбулентном течении. Причина, по существу, та же — слабый механизм переноса, действующий в ламинарном потоке, с ростом числа Рейнольдса вытесняется более сильным механизмом турбулентного обмена,  [c.192]


На рис. 8.3 представлена зависимость коэффициента теплоотдачи от скорости циркуляции Wq при турбулентном течении воды без кипения (прямая 1) и в условиях кипения при различных значениях плотности теплового потока (кривые 2 к 3) [166]. При кипении 3 трубах также можно выделить три области режимных параметров, различающихся между собой по механизму переноса теплоты. При малых скоростях значение коэффициента теплоотдачи определяется процессом парообразования. При больших скоростях и том же значении q коэффициент теплоотдачи не зависит от плотности теплового потока. Между этими крайними областями режимных параметров располагается зона, в которой проявляются оба механизма переноса теплоты.  [c.227]

При k < 0,01 формула (8.7) обобщает режимы с ухудшением теплоотдачи вне зависимости от величины k. Максимум температуры стенки возникает в сечениях трубы с температурой жидкости ниже псевдокритической на несколько градусов. Вероятно, ухудшение теплоотдачи при k < 0,01 связано с влиянием переменности физических свойств по сечению потока на процессы турбулентного переноса. При к = 0,01 -н 0,4 под влиянием естественной конвекции происходит дополнительное снижение теплоотдачи. Максимумы температуры стенки возникают в сечениях трубы, где средняя температура ниже псевдокритической на 15—20° С и более. При к 0,4 снижение теплоотдачи под влиянием естественной конвекции вырождается и может наступить улучшение теплоотдачи. i В формулах (8.7), (8.8) Nu, Nuo — числа Нуссельта, рассчитанные по среднемассовой температуре [Nuq находится по формулам (4.1), (4.2)1 Ср = ( , — — — T y) — среднеинтегральная теплоемкость теплоносителя в ин-  [c.105]

Распределение коэффициентов массоотдачи (как и теплоотдачи) по длине канала неравномерно в пучности скорости стоячей волны массоотдача максимальная, а в узлах — минимальная. Максимальное увеличение массоотдачи при Re < 150 составляет К = 2,7. В узлах скорости стоячей волны наблюдается уменьшение коэффициента массоотдачи на 10% (рис. 48). Измерение осред-ненного по времени профиля скорости по сечению канала в зависимости от уровня звукового давления вблизи пучности скорости представлено на рис. 49. С увеличением интенсивности звуковых колебаний профиль скорости в ядре потока выравнивается, а вблизи стенки становится круче, т. е. режим течения принимает характерные особенности турбулентного потока.  [c.140]

Сопоставление многочисленных опытных материалов указывает на сильную зависимость коэффициента теплоотдачи от структурных особенностей потока. Экспериментальный цилиндр, помещенный один раз в аэродинамическую трубу за плавным конфузором, через который воздух всасывается из большой емкости, а другой раз в ту же трубу, но за встроенным в нее вентилятором, на линии нагнетания, показывает разную интенсивность теплоотдачи, хотя все прочие условия сохраняются одинаковыми. За вентилятором величина а может оказаться раза в полтора выше, чем на входе в трубу из спокойной атмосферы. Это всецело объясняется очень высокой турбулентностью, создаваемой вентилятором и, напротив, слабейшей турбулентностью, характерной для начального участка аэродинамической трубы с плавным входом из атмосферы. Приведенная выше расчетная формула относится именно к таким условиям, когда турбулентность потока мала. Соображения по поводу влияния турбулентности на теплоотдачу единичного цилиндра будут нам полезны при обсуждении работы пакетов труб.  [c.132]

При кольцевом течении смеси тепловой ноток не является таким решаюш им фактором, как в условиях расслоенного течения. Однако подводимое к потоку тепло вызывает изменение объемного соотношения фаз в смеси я способствует развитию турбулентности в потоке. Поэтому чем больший тепловой поток подводится к двухфазному потоку, тем выше коэффициент теплоотдачи. Это учитывается членом в уравнении (8). Интенсивность турбулентности, вызываемая тепловым потоком, более точно описывается числом характеризуюш им кипение жидкости  [c.267]


В технических приложениях мы чаще всего сталкиваемся с задачами теплообмена, в которых происходит не изолированное развитие теплового пограничного слоя, а совместное развитие гидродинамического и теплового пограничных слоев. В литературе имеется несколько работ, посвященных решению этой задачи. Решения проводились преимущественно интегральными методами, так как в принципе эта задача подобна задаче теплообмена при развитии турбулентного пограничного слоя на наружной поверхности тела. Однако первая задача дополнительно осложняется тем, что на развитие турбулентного пограничного слоя сильно влияют условия на входе в трубу. Если вход в трубу выполнен в виде хорошо спрофилированного сопла, формирующего профиль скорости во входном сечении, близкий к однородному, и если на входе имеется турбулизатор пограничного слоя, то развитие полей скорости и температуры в начальном участке близко к расчетному. Такие условия на входе специально создаются в лаборатории, а на практике встречаются довольно редко. Если не проводить искусственную турбулизацию пограничного слоя, на стенке будет развиваться ламинарный пограничный слой. В зависимости от числа Рейнольдса и степени турбулентности главного потока ламинарный пограничный слой может стать стабилизированным прежде, чем произойдет переход к турбулентному пограничному слою. В промышленных теплообменниках вход в трубу выполнен обычно далеко не в виде сопла. Значительно чаще вход представляет собой внезапное сужение. Во многих теплообменниках перед входом в трубки имеются колена. В любом случае на входе происходят отрыв потока и интенсивное образование вихрей, распространяющихся вниз по течению. Это значительно интенсифицирует теплоотдачу по сравнению с теплоотдачей к развивающемуся турбулентному пограничному слою, когда турбулентные вихри образуются только на стенке трубы.  [c.235]

При поперечном обтекании круглого цилиндра и при обтекании шара на передней части этих тел образуется ламинарный пограничный слой (по крайней мере, при достаточно низких числах Рейнольдса, когда переход к турбулентному пограничному слою не происходит). Расчет местной плотности теплового потока в окрестности критической точки и на лобовой поверхности тел выполняется рассмотренными методами. Однако в сечении цилиндра или шара, расположенном несколько выше по потоку, чем миделево, происходит отрыв ламинарного пограничного слоя (отрыв турбулентного пограничного слоя происходит несколько ниже миделева сечения). После отрыва пограничного слоя на поверхности тела наблюдаются колебания местного коэффициента теплоотдачи, соответствующие сложному вихревому характеру течения с уносом вихрей от поверхности в гидродинамический след.  [c.274]

При кипении жидкости основной поток тепла от поверхности нагрева передается жидкой фазе, так как она обладает значительно большей теплопроводностью, чем паровая фаза. Поэтому, как и в случае конвекции однофазной жидкости, основным тепловым сопротивлением при кипении является тепловое сопротивление пограничного слоя жидкости. Однако периодический отрыв паровых пузырьков от стенки и их всплывание вызывают сильное движение, турбулизацию жидкости, разрушающую пограничный слой, что приводит к значительному увеличению интенсивности теплоотдачи по сравнению с конвекцией однофазной жидкости. Большой эффект увеличения теплоотдачи за счет парообразования в пограничном слое жидкости обусловлен тем, что при кипении разрушение пограничного слоя исходит непосредственно от поверхности нагрева, на которой зарождаются паровые пузырьки. Поэтому турбулизирую-щее влияние паровых пузырьков охватывает весь пограничный слой и далее распространяется на ядро потока. При конвекции однофазной жидкости также может иметь место турбулизация пограничного слоя жидкости. В этом случае она возникает за счет турбулентных пульсаций жидкости, которые возрастают с увеличением скорости ее движения. Но эти возмущения идут в обратном направлении, т. е. из ядра потока к стенке, и полностью на. всю толщину пограничного слоя из-за вязкости жидкости не распространяются. При любой скорости движения на поверхности сохраняется тонкий  [c.225]

Далее излагается приближенная методика определения интенсивности теплоотдачи от стенки к турбулентному потоку при заданной величине вдува, отличавшаяся, как нам кажется, физической наглядностью и вместе с тем формальной простотой. ЗдеЬь она представляется целесообразной также потому, что доводит излагаемые расчеты до фактического определения коэффициентов теплоотдачи, т.е. др конца.  [c.76]

Теплоотдача ори поперечном обтеканни труб. В химической технологии большое распространение получили трубчатые теплообменники с перекрестным током. Трубы в этом случае обтекаются снаружи перпендикулярным их оси потоком жидкости. Турбулентность потока при этом повышается, что при одинаковых скоростях ведет к повышению теплоотдачи на внешней поверхности труб при поперечном обтекании по сравнению с продольным.  [c.186]

При небольших скоростях потока и при достаточно большой плотности теплового потока теплоотдача определяется процессом парообразования. При больших скоростях движения жидкости теплообмен определяется законами турбулентного движения а С. С. Кутате-ладзе предложен простой и эффективный метод учета совместного влияния скорости циркуляции и плотности теплового потока на теплоотдачу при кипении. В этом случае влияние этих факторов оценивается соотношением предельных значений — коэффициента теплоотдачи при кипении 00 и коэффициента теплоотдачи к вынужденному нотоку при отсутствии кипения о. При оо/ао<0,5 принимают а = о при Qtoo/ao > 2 а = оо. В области 0,5 < оо/схо < 2 коэффициент теплоотдачи рассчитывается по интерполяционной формуле  [c.202]


И-М. Поток воздуха, движущийся с постоянной скоростью, продольно обтекает плоскую изотермическую пластину. От передней кромки пластины нарастает лам,инарный пограничный слой. Рассмотрите два варианта. В первом случае переход от ламинарного пограничного слоя к турбулентному происходит при Re = 3- 10 а во втором—при Лед = 10 . Вычислите и постройте в логарифмических координатах зависимость числа Стантона от числа Рейнольдса (Rex) вплоть до Ред = 3-10в. Считайте, что переход от ламинарного пограничного слоя к турбулентному происходит скачкообразно п одном сечении (что в действительности не так). Число Стантона в области турбулентного пограничного слоя вычисляйте с помощью интегрального уравнения энергии, сопрягая в сечении перехода от ламинарного пограничного слоя к турбулентному соотвегствующие толщины потери энтальпии так же, как при выводе уравнения (11-29). Постройте также зависимость числа Стантона от числа Re для случая, когда турбулентный пограничный слой начинает развиваться непосредственно от передней кромки пластины. Определите координату j , от которой фактически развиваегся турбулентный пограничный слой, когда ему предшествует ламинарный. Как влияет на эту величину изменение критического значения Re, при котором происходит переход от ламинарного пограничного слоя к турбулентному Каково должно быть число Рейнольдса, чтобы коэффициент теплоотдачи к турбулентному пограничному слою можно было вычислять с точностью 2%, не учитывая влияние начального участка с ламинарным пограничным слоем  [c.306]

Критическое значение этой величины впервые было вычислено Джеффри . Правильность вычислений Джеффри была затем подтверждена работами Лоу и Авсека . Для твердых стенок, хорошо проводящих тепло и снизу и сверху, это критическое значение равно приблизительно 1705. Шмидт и Сондерс , производившие опыты с водой при средней температуре от 18 до 20°, откладывали измеренные значения в функции от мощности электрического тока, нагревавшего стенку, и обнаружили, что полученные кривые имеют один четко выраженный перелом при А, равном от 1700 до 1800, и второй перелом приблизительно при Л = 47000 (переход к турбулентному потоку). Далее они нашли, что при значениях Л от 47000 до 150 000 (наибольшее значение А, которого они достигли в своих опытах), теплоотдача определяется формулой  [c.557]

Рассмотрим процесс поперечного обтекания одиночной цилиндрической трубы потоком жидкости (рис. 17.7). Плавное обтекание цилиндра возможно только при малых скоростях потока — при Re < 5. При всех значениях Re > 5 наблюдается отрыв потока от стенки трубы и образование в кормовой части двух симметричных вихрей, которые с увеличением скорости потока вытягиваются по течению, удаляясь от трубы. Ламинарный пограничный слой, образующийся на лобовой части по обе стороны от точки О, ирн 5 < Re < 2-10 отрывается от поверхности трубы в точке а, характеризующейся углом ф 82° (рис. 17.7, а). Увеличение толщины пограничного слоя от минимального в точке О до максимального в точке отрыва а приводит к увеличению термического сопротивления и уменьшению коэффициента теплоотдачи а. Коэффициент а имеет максн.мальное значение в точке О, минимальное — в точке отрыва а. В кор.мовой части значения а вновь увеличиваются за счет разрушения пограничного слоя и образования вихрей, турбулизирующих поток. При значительных числах Рейнольдса (Re > 2-10 ) ламинарный пограничный слой переходит в турбулентный (точка Ь на рис. 17.7, б) и место отрыва от трубь перемещается по потоку (точка а). Это приводит к улучшению обтекания цилиндра (ср 120") и уменьшению вихревой зоны.  [c.191]

Перейдем к рассмотрению теплоотдачи при турбулентном движении жидкости в трубе. Развитый турбулентный режим течения в трубе осуществляется при Re lOOOO. В диапазоне 2300Re1 O в трубе наблюдается переходный режим течения — неустойчивый режим, характеризующийся сменой ламинарного и турбулентного потока. Такое состояние характеризуется так называемым коэффициентом перемежаемости, O io l, представляющим собой относительное время существования турбулентного потока величина 1—со приходится на долю ламинарного потока. Надежные рекомендации по расчету теплоотдачи при переходном режиме пока не разработаны. Поэтому возможны лишь оценки по минимальному и максимальному коэффициентам теплоотдачи для ламинарного и турбулентного режимов соответственно с учетом коэффициента перемежаемости.  [c.386]

Теплоотдача при турбулентном пограничном слое. Аналитический расчет теплоотдачи в турбулентном слое представляет большие трудности вследствие сложности самого двихсения и сложности механизма переноса количества движения и теплоты. Особенностью турбулентного течения является пульсационный характер движения. На рис. 2.34 показана осциллограмма колебаний скорости в фиксированной точке турбулентного потока. Отклонеггие мгновенной скорости w от средней w называется пульсацией. Наличие пульсаций как бы увеличивает вязкость, и тогда полная вязкость турбулентного потока будет суммой двух величин — молекулярной вязкости и дополнительной турбулентной. Турбулентная вязкость ji,p не является физическим параметром теплоносителя, как коэффициент динамической вязкости, и характеризует интенсивность переноса количества движения в турбу-лентно.м потоке. Аналогично вязкости в уравнении движения, в дифференциальном уравнении энергии дополнительно к молекулярной теплопроводности появляется турбулентная теплопроводность характеризующая турбулентный перенос теплоты и также не являющаяся физическим параметром теплоносителя.  [c.129]

В заданных конкретных условиях для каждой жидкости существует предельное значение критерия Kw, выше которого влияние механизма турбулентного обмена в однофазной среде становится пренебрежимо малым. Однако в общем случае эта граница не может быть точно определена только с помощью критерия Kw [182]. Дело в том, что при кипении жидкости с заданными физическими свойствами количество теплоты, вынесенное из пристенной области за счет процесса парообразования, пропорционально ql rp"), а интенсивность турбулентного обмена в однофазной среде определяется значением числа Рейнольдса Re = twi/v, а не одной только скоростью W [182]. Например, при фиксированных значениях плотности теплового потока я скорости циркуляции интенсивность переноса теплоты при турбулентном течении однофазной среды с увеличением диаметра трубы уменьшается. Следовательно, этот механизм переноса перестает влиять на теплоотдачу к кипящей жидкости в трубе большего диаметра при меньшем значении q и, следовательно, Кш- При механизмов переноса теплоты с увеличением вязкости жидкости также смещается в сторону меньших значений критерия К -При кипении в трубах коэффициент теплоотдачи зависит также от иаросодержания потока. Эта зависимость обусловлена возрастанием истинной скорости жидкой фазы w и изменением структуры потока по мере накопления в нем пара при неизменном массовом расходе парожидкостной смеси.  [c.228]


В области турбулентного режима течения (Яе>80, / е>10 ) опыты (кривые /, 2а), описываемые формулами (5.36) и (5.37), определяют нижний уровень теплоотдачи [32, 97, 101]. Значительно выше располагаются четыре группы опытных точек. Первая группа точек (кривая 4) получена при малом содержании кислорода в натрии (6-10 " вес.%) [Ю5, 106]. Вторая группа точек (кривая 26)—результат опытов на трубе малого диаметра (4=4 мм) при скоростях 25 м1сек [97]. Третья группа точек (кривая 6) включает опытные точки, полученные на основании измерения поля температур [99, 100]. Сюда же относятся данные, полученные по измерению температуры стенки трубы при содержании кислорода в натрии меньше 2 I0 вес.%. Четвертая группа точек (кривая 7) получена путем обработки поля температур ио сечению потока [107]. Все эти данные в области чисел РеТ>300 описываются теоретическими зависимостями (5.20), (5.28) и (5.20а). Точки, полученные в работе [2] (кривая 3), располагаются несколько ниже. В последней работе от.мечено влияние времени работы установки на уровень теплоотдачи. Одним из факторов, определяющих уровень теплоотдачи к натрию, является степень чистоты металла, и в частности содержание кислорода в виде нерастворенных в нем окислов [99]. В связи с этим экспериментальные данные, полученные при измерении распределения температур по сечению потока (кривые 6, 7), и данные с натрием, содержащим кислород ниже предела растворимости (кривая 4), располагаются выше точек, полученных в опытах, проведенных без специальных мер очистки металлов (кривые / и 2а).  [c.150]

Таким образом, при ускорении потока интенсивность турбулентности повышается вблизи стенки, но снижается в ядре потока. При этом интенсивность турбулентности в ядре потока может быть меньше не только квазистационарного, но и своего исходного значения до ускорения потока. Возможна даже ламинаризация потока в ядре. При замедлении потока, наоборот, уменьшение интенсивности турбулентности у стенки сопровождается ее возрастанием в ядре потока. Как было показано в работе [24], при развитом турбулентном течении (Ее> (1,5. .. 2) Ю ) преобладающее влияние на теплообмен оказывает изменение интенсивности турбулентности вблизи стенки и поэтому ускорение потока ведет к увеличению теплоотдачи по сравнению с квазистационарной, а замедление — к уменьшению. При уменьшении чисел Рейнольдса (при Ее < < (1. .. 1,5) 10 ) и соответственно уменьшении интенсивности турбулентности потока преобладающим оказывается влияние ее изменения в ядре потока. Ускорение потока при этом может приводить к уменьшению теплоотдачи, а замедление, наоборот, к увеличению.  [c.37]

Таким образом, изменение во времени коэффициента Кн и к = ЛГн/А кс (см. рис. 5.4) можно объяснить прежде всего изменением турбулентной структуры потока при нестационарном разогреве пучка витых труб, приводящей к перестройке температурных, по л ей теплоносителя. Действием этого механизма переноса бьши объяснены также особенности нестационар-ногб теплообмена в каналах, исследованные в работах [24, 26]. Учитывая, что между коэффициентом теплоотдачи а и температурным полем в потоке существует связь (дТ1дг)г = Гс  [c.148]

В прямотрубных теплообменных аппаратах расчет теплоотдачи на входном участке с неустановившимся режимом течения производится по соотношениям, учитывающим зависимость коэффициента теплоотдачи от относительного расстояния lfd вниз по потоку от входа в трубу. В змеевиках протяженность входного участка с переходом от ламинарного с макровихрями к турбулентному режиму течения сокращается [137]. Для обоих режимов она гораздо меньше, чем в прямых трубах [121, 124, 125, 131, 137]. Оценки, выполненные Мори и Накаяма в [131 [, показали, что соотношения для значений коэффициентов теплоотдачи, полученные на участках с полностью развитыми полями скоростей и температуры, могут с достаточной степенью точности использоваться при расчетах средней интенсивности теплоотдачи в змееви-  [c.51]

Для воды при н=100—Э60° Кев=в,2—5,7. При наличии теплообмена переход к волновому режиму течения ускоряется с увеличением теплового потока, давления и турбулизирующего воздействия движущегося пара на пленку. По данным [Л, 3], Rea = 7—8. Повышение интенсивности возмущений за счет волнового движения приводит к появлению дополнительного молярного переноса тепла в лленке. При турбулентлом движении лленки теплоотдача возрастает, так как основным способом переноса тепла в пленке становится конвекция. Переход от ламинарного к турбулентному имеет место при критическом значении числа Рейнольдса, равном 400—500.  [c.271]

Повышение уровня турбулентности потока перед входом в решетку приводит к увеличению интенсивности теплообмена между профилем и обтекаюш,ей его средой. Средний по профилю коэффициент теплоотдачи возрастает при Re = 2-10 на 30%, а при Re = 7-10 — на 45%.  [c.70]

Конденсация иара в потоке недогретой жидкости. При пузырьковой структуре неравновесного двухфазного турбулентного потока и Рг = 1 коэффициент теплоотдачи, отнесенный к площади поверхности парового пузыря, может быть определен как [58]  [c.246]


Смотреть страницы где упоминается термин Теплоотдача к турбулентному потоку при : [c.229]    [c.110]    [c.220]    [c.288]    [c.228]    [c.41]    [c.211]    [c.104]    [c.206]    [c.183]    [c.263]    [c.292]    [c.293]    [c.275]    [c.551]   
Смотреть главы в:

Основы теории теплообмена Изд.2  -> Теплоотдача к турбулентному потоку при



ПОИСК



Поток Течение турбулентное — Теплоотдач

Теоретический расчет теплоотдачи при продольном омывании пучков труб турбулентным потоком жидкого металла

Теплоотдача

Теплоотдача в окрестности критической точки при взаимодействии осесимметричной турбулентной струи с пластиной, расположенной нормально к направлению скорости потока

Теплоотдача в окрестности критической точки при взаимодействии плоской турбулентной струи с пластиной, расположенной нормально к направлению скорости потока

Теплоотдача к турбулентному потоку при Теплоотдача к турбулентному потоку при Температурный фактор

Турбулентность потока

Турбулентный поток



© 2025 Mash-xxl.info Реклама на сайте