Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение нелинейное

Для математического описания процесса поглощения нелинейных волн часто используют квазилинейный метод описания рассматривается отдельно искажение и ослабление каждой гармоники в отдельности. Обозначим через среднюю по времени плотность энергии в п-й гармонике. Изменение этой энергии в волне определяется, с одной стороны, потерями вследствие вязкости и теплообмена, с другой стороны, энергия изменяется вследствие нелинейного взаимодействия с другими гармоническими составляющими. Инте-  [c.61]


МНОГОФОТОННОЕ (НЕЛИНЕЙНОЕ) ПОГЛОЩЕНИЕ  [c.401]

Двухфотонное поглощение, возможное только при больших мощностях излучения, является нелинейным процессом. Это следует из  [c.402]

Остановимся кратко на нелинейных эффектах, связанных с воздействием света большой интенсивности на коэффициент его поглощения fe(v) в том или ином веществе, что приводит к нарушению закона Бугера (см. 2.5). Возникающее нелинейное поглощение света определенной длины волны, обычно совпадающей с резонансными линиями исследуемого вещества, может быть использовано в диагностических целях или других приложениях и нашло широкое применение в современной спектроскопии.  [c.171]

Формулы (35.17) и (35.18) позволяют оценить зависимость населенностей уровней от параметров рассматриваемой системы и интенсивности внешнего оптического возбуждения. Населенность возбужденного уровня только при малых пив начальные моменты времени t растет линейно. При больших интенсивностях потоков эта зависимость становится нелинейной, проявляется тенденция к насыщению, рост 2 замедляется, а затем в стационарном режиме совсем прекращается. Коэффициент поглощения (35.19) при этом систематически уменьшается и в пределе при и оо стремится к нулю (рис. 35.4). Стационарный режим устанавливается, как правило, очень быстро, для электронных переходов — приблизительно за 10 с и меньше.  [c.274]

Использование в оптическом эксперименте лазерных источников света привело к открытию ряда явлений, не совместимых с принципом линейности. Практически одновременно с созданием первых лазеров были обнаружены такие нелинейные оптические явления, как генерация гармоник, сложение и вычитание частот световых потоков, вынужденное комбинационное рассеяние света, двухфотонное поглощение. Было ясно также, что сам лазер — это оптическая система, в которой важную роль играет эффект насыщения усиления света активной средой. Все это стимулировало бурное развитие теоретических и экспериментальных исследований нелинейного взаимодействия света с веществом, разработку методов практического использования нелинейных оптических явлений в науке и технике и привело, в частности, к возникновению нелинейной оптики.  [c.298]

Нелинейная оптика ее сущность и первые шаги 211 9.2. Фотонная структура процессов взаимодействия света с веществом 219 9.3. Явления, основанные на многофотонном поглощении 227 9.4. Преобразование частоты света  [c.127]


Явления, связанные с обратимыми изменениями физических свойств среды под действием проходящего сквозь среду интенсивного света, называют нелинейно-оптическими. Выше мы говорили об изменении под действием света такой характеристики среды, как ее диэлектрическая восприимчивость. С этим связаны, в частности, явления генерации оптических гармоник, параметрического рассеяния света, параметрической генерации света — явления, прекрасно демонстрирующие нарушение принципа суперпозиции световых волн в среде (позднее мы поговорим о них подробнее). Нелинейно-оптические явления могут быть обусловлены изменением под действием света не только восприимчивости, но и других физических характеристик, например степени прозрачности (коэффициента поглощения) вещества.  [c.213]

Если в оптическом переходе участвует один фотон, то такой переход (такой процесс взаимодействия излучения с веществом) называют однофотонным. Однофотонный переход сопровождается либо рождением (испусканием), либо уничтожением (поглощением) фотона, причем испускание фотона может быть либо спонтанным, либо вынужденным. До сих пор мы имели дело только с однофотонными переходами (однофотонными процессами). Они определяют свойства теплового излучения и оптические спектры вещества, лежат в основе как фотоэлектрических, так и люминесцентных явлений. С однофотонными процессами связано и нелинейно-оптическое явление просветления среды.  [c.219]

Для всей совокупности отрицательных и положительных значений у уравнение (2.2.1) нелинейно, так как при проходе х == у через значение / = 0, а изменяется скачком от до — о и обратно. Поэтому для изображения соответствующих движений на фазовой плоскости необходимо отдельно построить фазовые траектории для I/> О и для г/<0, а затем сшить их в точках г/ = 0 для получения непрерывных фазовых траекторий на всей фазовой плоскости. В самом деле, система изучаемого типа при наличии инерционных и упругих сил, т. е. с резервуарами кинетической и потенциальной энергий, может совершать лишь непрерывные движения, допускает лишь непрерывные изменения координаты и скорости, а, следовательно, ее фазовый портрет обладает только непрерывными фазовыми траекториями. Разрывы непрерывности в значениях координаты или скорости и наличие конечных скачкообразных изменений этих величин означали бы скачкообразное изменение потенциальной или кинетической энергий, что соответствовало бы физически бессмысленному мгновенному выделению или поглощению бесконечной мощности.  [c.48]

Таким образом, точка пересечения кинетических кривых близка к среднему размеру максимальной ячейки дислокационной структуры 2-10 м, формирующейся перед вершиной усталостной трещины в зоне пластической деформации, с точностью разброса экспериментальных данных. Эта величина разделяет два масштабных подуровня — мезо I и мезо II. Поэтому существование в середине кинетической диаграммы особой точки для сплавов на различной основе является общим синергетическим признаком нарушения принципа однозначного соответствия, когда происходит усложнение механизма поглощения энергии у вершины усталостной трещины, и это вызывает изменение кинетического процесса в случае реализуемого нагружения материала с постоянной нагрузкой. Именно в этот момент происходит изменение в закономерности роста усталостной трещины, которое определяется изменением формирования параметров рельефа излома и переходом от линейной к нелинейной зависимости скорости роста трещины или шага усталостных бороздок от длины трещины. Многочисленные измерения кинетических параметров роста трещины в виде шага уста-  [c.195]

В [Л. 5-8] исследовалась фильтрация воды и растворов электролитов в глинизированном песчанике с малым содержанием глинистых частиц. Результаты представлены на рис. 5-2, из которого видно, что зависимость между градиентом давления и скоростью фильтрации нелинейна. Одной из причин такого отклонения от закона Дарси является более прочная связь воды со скелетом тела" В частности, в коллоидных капиллярно-пористых телах наблюдаются осмотическое поглощение воды и капиллярное связывание жидкости. Поэтому необходимо более детально рассмотреть связь жидкости в пористых телах.  [c.293]


В кристаллах наблюдаются те же нелинейные эффекты, что и в изотропных телах генерация гармоник, нелинейное поглощение, нелинейное взаимоде11Ствие волн с образованием волн суммарной и разностной частоты, в т. ч. комбинац. рассеяние звука на звуке, и т. д. Однако нелинейная акустика кристаллов отличается сложностью и многообразием атих эффектов, Сущест-иование трёх ветвей акустич. колебаний увеличивает в кристаллах число видов нелинейного взаимодействия акустич. волн, разрешённых условиями фазового синхронизма. Возможность того или иного вида взаимодействия, а также его эффективность зависят от ориентации волновых нормалей взаимодействующих волн от-  [c.510]

Хотя нелинейная спектроскопия в принципе имеет дело с бесконечным числом новых параметров — нелинейных восприимчивостей разл. порядков M , фактически в большинстве применяемых методов (когерентная активная спектроскопия рассеяния света, спектроскопия двухфогонного поглощения, нелинейная поляризац. спектроскопия) исследуются резонансы в кубичной нелинейной восприимчивости < 3)1 к-рая стала одной из важнейших характеристик материальных сред.  [c.299]

В усиливающей среде не аинейные потери могут определяться различными механизмами. Это может быть двухфотонное и многофотонное поглощение, нелинейное рассеяние различных видов, выход излучения за пределы активной среды при значительном увеличении расходимости вследствие самофокусировки, линейной и нелинейной дифракции, нелинейных аберраций и т. д.  [c.197]

Действие пассивных затворов основано на способности материалов изменять свои оптические свойства под влиянием падающего на них света. Простейшие пассивные затворы представляют собой пленку из поглощающего материала, помещенную в резонатор лазера. В определенный момент пленка испаряется, открывая расположенное за ней зеркало. При этом потери в резонаторе лазера резко падают и происходит генерация гигантского импульса. Недостаток таких простейших модуляторов вытекает из необратимости происходящих процессов, в связи с чем чан1.е используются устройства на основе обратимых процессов насыщения поглощения, нелинейности коэффициента отражения, вынужденного рассеяния Мандельштама — Бриллюэна, самофокусировки.  [c.176]

Дисперсия нелинейной восприимчивости становится более резко выраженной, когда одна из частот попадает в область поглощения вещества. Если начинает поглощаться излучение с частотой второй гармоники, то происходит заметное увеличение нелинейной восприимчивости. Такой эффект наблюдали Зорев и Мус [21], которые работали с твердыми растворами ZnS— dS и dS— dSe. Ширина запрещенной зоны Eg в этих кристаллах в зависимости от концентрации систематически изменяется от 1,71 эв в dSe до 2,36 эв в dS и до 3,52 эв в ZnS. Такой диапазон изменения Eg вдвое превышает энергию фотонов, испускаемых лазером на неодимовом стекле. При уменьшении ширины запрещенной зоны с 1,52 (2Йш) до 0,73 (2йш), приводящему к попаданию второй гармоники в область сильного поглощения, нелинейная восприимчивость 2(333 ( 2 u = U + u) увеличивается на порядок. Этот результат согласуется с теоретическим расчетом по формуле (2.48). Резонансный знаменатель этого выражения, зависящий от частоты oi + шг = 2м, показывает, что, после того как 2/гм станет больше Eg, нелинейная восприимчивость должна расти по такому Ж закону, как и комплексная линейная восприимчивость на частоте 2ш. Таким образом, существует во всяком случае качественное согласие между теорией и экспериментом. Заслуживает внимания то, что даже в области прозрачности, где Eg > 2/гм, нелинейность dS много больше, чем KDP. Объяснение, по-видимому, заключается в том, что отклонение от инверсионной симметрии в dS и полупроводниках типа А В гораздо сильнее. Поэтому значительно большая сила осциллятора связывается с волновыми функциями валентных электронов, не обладающими определенной четностью.  [c.217]

Бугера. Она количественно описывает спадание интенсивности излучения по мере его проникновения в поглощающую среду. При записи дифференциального уравнения коэффициент поглощения q считается не зависящим от интенсивности света. Это положение лежит в основе всех обсуждаемых ниже явлений. Справедливость такого линейного приближения доказана множеством самых разных экспериментальных фактов. Лишь при использовании источников света очень бoльuJOЙ мощности (лазеров), появившихся в последнее время, возникла необходимость учета зависимости q от 1, что и послужило одной из причин возникновения нелинейной оптики (см. 4.7, 8.5).  [c.101]

Возникшая как самостоятельный раздел оптики в начале 60-х годов (после появления лазеров) нелинейная оптика объединяет обширный круг явлений, обусловленных зависимостью параметров среды [коэффициенты поглощения k(v) и преломления n(v)] от интенсивности проходящего света. Оставим пока в стороне вопрос о нарушениях закона Бугера, связанных с у1сазанной зависимостью коэффициента поглощения k v) от напряженности электрического поля, и обратим внимание на свойства коэффициента преломления n(v), проявляющиеся в сильных полях. В таком изложении основ нелинейной оптики легче будет отделить классические эффекты (самофокусировка излучения, преобразование частоты света со всеми вытекающими отсюда последствиями) от квантовых, рассмотрение которых требует введения понятия фотона и других, более сложных представлений (см. 8.5).  [c.168]

Нелинейные оптические процессы могут наблюдаться и при относительно малой интенсивности света, облучающего исследуемую среду. Так, например, открытое еще в долазерный век С. И. Вавиловым и В. Л. Левшиным (1926) уменьшение поглощения уранового стекла при увеличении яркости свечения конденсированной искры положило начало большому циклу работ по просветлению различных материалов, которые имеют большое практическое значение (создание безынерционных световых затворов и др.). Они легко интерпретируются (см. 8. 5) в квантовых представлениях, связанных обеднением ответственного за поглощение нижнего уровня за счет перехода атома на более высокий долгоживущий уровень. Однако значение таких нелинейных процессов полностью проявилось лишь после изобретения лазеров, а дальнейшее развитие нелинейной оптики неотделимо от развития квантовой теории.  [c.171]


Однако следует принять во внимание, что при поглощении света молекула переходит в новое, возбужденное состояние, запасая поглощенную энергию. Пока она находится в таком состоянии, ее способность поглощать свет изменена. То обстоятельство, что в опытах Вавилова закон Бугера соблюдался при самых больших интенсивностях, доказывает, что число таких возбужденных молекул в каждый момент остается незначительным, т. е. они очень короткое время находятся в возбужденном состоянии. Действительно, для веществ, с которыми были выполнены указанные опыты, его длительность не превышает с. К этому типу относится огромное большинство веществ, для которых, следовательно, справедлив закон Бугера. Выбрав специально вещества со значительно ббльщим временем возбужденного состояния, Вавилов мог наблюдать, что при достаточно большой интенсивности света коэффициент поглощения уменьшается, ибо заметная часть молекул пребывает в возбужденном состоянии. Эти отступления от закона Бугера представляют особый интерес, так как они представляют собой исторически первые указания на существование нелинейных оптических явлений, т. е. явлений, для которых несправедлив принцип суперпозиции. Последующие исследования привели к открытию больщого класса родственных явлений, содержание которых излагается в гл. XL и XLI. Таким образом, закон Бугера имеет ограниченную область применимости. Однако в огромном числе случаев, когда интенсивность света не слишком велика и продолжительность пребывания атомов и молекул в возбужденном состоянии достаточно мала, закон Бугера выполняется с высокой степенью точности.  [c.566]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]

Выше уже отмечались исследования С. И. Вавилова зависимости коэс1х ициента поглощения от интенсивности поглощаемого света (см. гл. ХХУИ1, ХЬ). В книге Микроструктура света , обобщая свои наблюдения, относящиеся к 20 гг., и последующие опыты, Вавилов писал Нелинейность в поглощающей среде должна наблюдаться не только в отношении абсорбции. Последняя связана с дисперсией, поэтому скорость распространения света в среде, вообще говоря, также должна зависеть от световой мощности. По той же причине в общем случае должна наблюдаться зависимость от световой мощности, т. е. нарушение принципа суперпозиции, и в других оптических свойствах среды — в двойном лучепреломлении, дихроизме, вращательной способности и т. д. . Последующее развитие нелинейной оптики, об>условленное экспериментальным исследованием распространения лазерного излучения, не только подтвердило общие соображения Вавилова о мно-гообрази И возможных нелинейных явлений, но и привело к обнаружению всех перечисленных им конкретных эффектов. Поэтому Вавилов по праву признан основоположником нелинейной оптики.  [c.820]

Напомним, что причину нелинейных явлений Вавилов усматривал в изменении числа молекул или атомов, способных погло-ш,ать свет, т. е. изменений, обусловленных переходом атомов и молекул в возбужденное состояние и конечной длительностью пребывания в этих состояниях. Помимо указанной, к нелинейным явлениям приводит и ряд других причин часть из них будет рас-с.мотрена ниже. В соответствии с этим и совокупность нелинейных явлений, обнаруженных при исследовании распространения лазерного излучения, оказалась еще более многообразной. Некоторые из них — вынужденное рассеяние Ман,дельштама — Бриллюэна, многофотонное поглощение и ионизация (см. 157), нелинейный фотоэффект ( 179) — описаны выше. В данной главе рассмотрены явления, сводящиеся, в общих чертах, к изменению направления распространения и спектрального состава излучения.  [c.820]

Следует отметить, что еще в 20-х гг. Вавилов искал экспериментальную зависимость коэффициента поглощения от интенсивности падающего светового потока. Однако в то время такую зависимость обнаружить не удалось, хотя интенсивность потока изменялась в опытах в 10 раз. Для обнаружения эффекта насыщения в двухуровневых системах нужны еще более мощные (лазерные) потоки. Из формул (35.17) — (35.19) следует, что нелинейность проявляется, если (при малых 12 и 21) u>A2l 2B2l = 4nhv . В этом случае вероятность вынужденного испускания превосходит вероятность спонтанного испускания.  [c.274]

Существует несколько причин такого изменения показателя преломления. В нелинейной среде из-за элект-рострикции световая волна приводит к изменению постоянного давления. В результате действия электрострик-ционного давления изменяется плотность, а следовательно, и показатель преломления среды. В жидкостях с анизотропными молекулами электрическое поле мощной световой волны оказывает ориентирующее действие на молекулы. При этом среда становится двоякопреломля-ющей и в показателях преломления для обыкновенной и необыкновенной волн появляются добавки, пропорциональные в первом приближении квадрату амплитуды поля. Данное явление подобно эффекту Керра (см. 19.2). Показатель преломления всегда изменяется в результате нагревания среды, вызванного поглощением излучения.  [c.309]

Первый нелинейно-оптический эксперимент — просветление среды. С. И. Вавилов еще в 20-х годах высказывал мысль, что квантовая природа света должна обусловливать нарушение принципа суперпозиции световых волн в среде и приводить к нелинейно-оптическим явлениям. Совместно с В. Л Левшиным он осуществил в 1925 г. первый нели-ноино-оптический эксперимент — наблюдал просветление уранового стекла под действием света конденсированной искры. В эксперименте было зафиксировано уменьшение коэффициента поглощения стекла на 1,5 % при точности измерений 0,3 %.  [c.215]

Возникновение нелинейной оптики. Как подчеркивал Вавилов, нелинейность среды должна наблюдаться не только в отношении поглощения света. В общем случае,— писал он,— должна наблюдаться завивимость от световой мощности, т. е. нарушение суперпозиции, и в других оптических свойствах среды . В связи с этим Вавилов предсказывал падение постулата спектральной неизменности монохроматического света, составляющего фундамент ньютоновской оптики. Недаром он в одной из своих работ приводил, подвергая сомнению, следующие строки из написанной в 1758 г. поэмы Дюлара  [c.217]


К ошибкам определения показателей поглощения приводят также попадание рассеяннного света на приемник излучения, неточная установка кювет и нелинейность регистрирующих устройств. Для уменьщения интенсивности рассеянного света приборы снабжаются сменными светофильтрами, выделяющими отдельные участки спектра. Лучшие результаты дают схемы с двойной монохроматизацией излучения.  [c.191]

Рис. 7.26. Нелинейное затухание в воде — зависимость коэффициента поглощения от амплитуды волны р (Re = p /2nbf, Ь = ф-[122 0-[1231 А -[1241 Д--[125] +-[126] -[127] Рис. 7.26. Нелинейное затухание в воде — зависимость <a href="/info/784">коэффициента поглощения</a> от амплитуды волны р (Re = p /2nbf, Ь = ф-[122 0-[1231 А -[1241 Д--[125] +-[126] -[127]
В общем случае в разложении поляризации по степеням поля необходимо учитывать также низкочастотные поля. Большинство нелинейных эффектов связано с членами ряда, пропорциональными квадрату и кубу амплитуды электрического поля. Квадратичная поляризация обусловливает существование таких эффектов, как генерация второй гармоники, оптическое выпрямление, линейный электрооптический эффект (эффект Поккельса) и параметрическая генерация. К эффектам, обязанным своим существованием поляризации, кубичиой по полю, откосятся геиерация третьей гармоники, квадратичный электрооптический эффект (эффект Керра), двухфотонное поглощение, вынужденное комбинационное рассеяние, вынужденное рассеяние Мандельштама — Бриллюэ-ка и вынужденное ралеевское рассеяние.  [c.860]

Соотношения (7.5.4) и (7.5.5) показывают ), что в автоколебательной системе с двумя контурами всегда осуществляется сильная связь (612621 = 4Р1Р2)- Поэтому бигармонический режим в такой системе невозможен. В газовом лазере преимущественно реализуется случай слабой связи. Это различие обусловлено тем, что в системе с двумя контурами (см. 7.5) усиление колебаний обеих частот происходит в одном и том же нелинейном активном элементе, например в полевом транзисторе или лампе. В газовом же лазере с неоднородным уширением линии поглощения усиление накаждой из генерируемых мод происходит за счет энергии различных атомов активной среды. Поэтому взаимное влияние колебаний различных частот оказывается малым и возможна одновременная генерация двух независимых колебаний.  [c.367]

Сила трения, возникающая при относительном движении двух контактирующих поверхностей, обычно представляется в виде постоянной силы, пропорциональной нормальной нагрузке, сжимающей обе поверхности, и направленной в каждый момент времени противоположно вектору скорости. Поэтому движение с трением необходимо исследовать, учитывая указанное ку-сочно-линейное поведение. На рис. 2.8 представлены некоторые случаи, когда демпфирование при трении происходит в простых конструкциях либо естественным путем, либо вследствие специальных конструктивных решений. Если балка защемляется за счет силы трения, возникающей при зажиме концов, то при действии силы Fexp(iat) динамические перемещения балки описываются линейной классической теорией до тех пор, пока сжатие при защемлении не станет достаточно велико, чтобы обеспечить появление больших продольных сжимающих нагрузок, которые требуют видоизменения уравнения движения. Если эта продольная сила, которая изменяется с частотой, в два раза большей, чем ш, станет большей цР, где —коэффициент трения, Р — статическая сила сжатия концов балки, то в опорах Начнется проскальзывание, что в свою очередь приведет к поглощению энергии в опорах. Аналогичное явление возникает и в двухслойной балке, где динамические перемещения станут нелинейными, как только сдвигающие напряжшия по средней линии превысят иЛ , где N—-статическая удельная поперечная нагрузка. В заклепочном соединении заклепка будет препятствовать движению концов балки, не ограничивая движений внутри узла крепления концов балки. В момент контакта с основанием в точке Jo движение прекратится и возобновится после того, как локальная поперечная сила превысит величину liN. В каждом из указанных случаев анализ довольно труден и утомителен в силу как нелинейного характера задачи, так  [c.73]

Качественно влияние диссипативных процессов на распространение такой немонохроматической волны может быть представлено, как более сильное поглощение высокочастотных гармонических составляющих, поскольку коэффициент потерь вдоль волны — (й. В результате интенсивного поглощения гармоник более высокой частоты процесс искажения тормозится потерями. Относительное влияние на искажение волны диссипативных и инерционных (нелинейных) членов уравнений гидродинамики вдоль продольной оси X для процесса, близкого к адиабатному, характеризуется числом Рейнольдса Кедц =. При больших числах Кед  [c.61]

СПЕКТРОСКОПИЯ (раздел физики, в котором изучают спектры оптические абсорбпионпая изучает спектры поглощения видимого, инфракрасного и ультрафиолетового света акустическая — совокупность методов измерения фазовой скорости и коэффициента поглощения звуковых волн различных частот, распространяемых в веществе вакуумная — спектроскопия коротковолнового ультрафиолетового и мягкого рентгеновского излучения, в которой применяют вакуумные спектральные приборы лазерная изучает полученные с помощью лазерного излучения спектры испускания, поглощения и рассеяния света мессбауэровская — метод изучения электрических и магнитных полей, создаваемых на атомных ядрах их окружением микроволновая — радиоспектроскопия электромагнитных волн сантиметрового и миллиметрового диапазонов длин волн нелинейная — методы исследования строения вещества, основанные на нелинейных оптических явлениях оптико-акустическая — метод анализа вещества, основанный на изучении спектров поглощения света, возникающих  [c.278]

АКТИВНАЯ ЛАЗЕРНАЯ СНЕКТРОСКОНЙЯ один из методов нелинейной спектроскопии, исс.педующий поглощение или рассеяние пучка света в среде, в к-рой предварительно (с помощью дополнит, лазерного излучения определ. частот) селективно возбуждены и (или) сфазированы изучаемые оптич. моды. Такое активное лазерное приготовление среды (накачка) меняет картину взаимодействия зондирующего (пробного) излучения со средой.  [c.38]


Смотреть страницы где упоминается термин Поглощение нелинейное : [c.311]    [c.219]    [c.63]    [c.52]    [c.450]    [c.5]    [c.274]    [c.220]    [c.134]    [c.80]    [c.126]    [c.217]    [c.38]   
Физические основы ультразвуковой технологии (1970) -- [ c.177 , c.181 , c.202 ]



ПОИСК



Коэффициент поглощения нелинейный

Многофотонное (нелинейное) поглощение

Нелинейное поглощение звука

Нелинейное поглощение звука. Влияние магнитного поля

Поглощение

Поглощение лазерного излучения нелинейное

Поглощение, дисперсия модели Био и выжимания флюида, оценка поглощения и проницаемости, гидроразрыв и микросейсмы нелинейная вибросейсморазведка деформации поро-пластичных сред как фактор осложнений при бурении и причина техногенной неотектоники ПОСЛЕСЛОВИЕ

Процессы нелинейного поглощения и рассеяния . Сечения рассеяния и нелинейные восприимчивости

Расчет сечения поглощения (усиления) в классической модели ЛоренОпределение структуры тензоров нелинейных оптических восприимчивостей, исходя из свойств макроскопической симметрии

Самовоздействие волн Нелинейная дисперсия и нелинейное поглощение

Скорость звука. Нелинейные механические характеристики жидкостей. Поглощение звука в жидкостях Распространение звука в твердых телах



© 2025 Mash-xxl.info Реклама на сайте