Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатели Сопротивления — Определение

В 3 было показано, что податливое препятствие может рассматриваться как дополнительный односторонний упругий элемент, присоединенный последовательно к упругой трансмиссии редуктора. При этом совершенно несущественно, имеет ли встретившееся препятствие упругий характер податливости или податливость его связана с разрушением препятствия. Важно лишь то, что между перемещением исполнительного органа и силами сопротивления существует определенная зависимость. Это позволяет ввести понятие приведенная жесткость препятствия , понимаемое как крутящий момент, который необходимо приложить к центру приведения (например, к валу ротора двигателя), чтобы повернуть его на 1 рад за счет податливости препятствия  [c.384]


Физический смысл дополнительного сопротивления состоит в следующем. На тех режимах работы сверхзвукового воздухозаборника, на которых скачки уплотнения не фокусируются у передней кромки обечайки, а выходят во внешний поток, через скачки уплотнения проходит не только струя воздуха, входящая в двигатель, но и определенная масса воздуха, обтекающего двигатель снаружи. Поэтому в тех струйках воздуха, которые проходят через скачки уплотнения, но не попадают в воздухозаборник, а растекаются вокруг него, вследствие потерь на скачках происходит уменьшение количества движения, что и создает сопротивление движению. Оно получается тем более значительным, чем интенсивнее сами скачки уплотнения и чем большее количество воздуха подвергается сжатию и растекается вокруг обечайки. Именно по этой причине дополнительное сопротивление называют также сопротивлением растекания.  [c.245]

Для пуска необходимо, чтобы момент сопротивления двигателя был меньше крутящего момента, создаваемого давлением газов на поршни при первых вспышках. Между тем, прц понижении температуры вязкость масла, а следовательно и момент сопротивления, возрастают и пуск двигателя затрудняется. Поэтому существует некоторое предельное значение вязкости масла, при котором пуск еще возможен. Величина момента сопротивления двигателя при этой предельной вязкости масла и является расчетным моментом сопротивления при определении мощности стартера.  [c.129]

Техническая скорость зависит от удельной мощности автомобиля и автопоезда передаточных чисел, КПД трансмиссии и согласованности совместной работы ее с двигателем сопротивления качению и аэродинамического сопротивления устойчивости, управляемости и тормозных качеств автомобиля и автопоездов, особенно на дорогах с низким коэффициентом сцепления плавности хода, величин кинематической максимальной скорости и допускаемой по правилам для определенных дорожных условий скорости движения, развиваемых скоростей движения на подъемах и спусках дорог.  [c.18]

Как будет показано в разд. 10, для крановых электроприводов промышленностью выпускаются тиристорные системы частотного и фазового управления. В ряде случаев применяется также система импульсного регулирования сопротивления в цепи ротора двигателя. Системы фазового и импульсного управления как системы параметрического регулирования, имеющие повышенные потери при регулировании, применяются только для управления двигателями с фазным ротором. Электроприводы с частотным управлением в основном применяются для управления короткозамкнутыми двигателями, однако в определенных условиях оказывается целесообразным их применение для обеспечения малых и посадочных скоростей в электроприводах с электродвигателями с фазным ротором. Примером могут служить электроприводы, в которых малогабаритные ПЧ со стабильными выходными значениями частоты и напряжения используются как источники питания двигателей сложных крановых комплексов для получения устойчивой малой скорости во всех четырех квадрантах работы электропривода.  [c.155]


Момент на валу двигателя может быть определен непосредственно, если известно усилие сопротивления перемещения Р, Н, по формуле  [c.177]

Для движения автомобиля с требуемой скоростью его двигатель должен обладать определенной мощностью, определяемой по формуле Ме = РУ, где Р — сила тяги V — скорость движения автомобиля. При равномерном движении сила тяги автомобиля равна силе сопротивления его движению. Так как дорожные условия непрерывно изменяются, то и сила тяги автомобиля также должна непрерывно изменяться. Поэтому при выборе двигателя для наземного транспортного средства учитывают условия его эксплуатации.  [c.416]

Подобно этому примеру можно рассмотреть и работу силовой установки вертолета. Рассмотрим моменты от сил, лежащих в горизонтальной плоскости. Для того чтобы вращать несущий винт, двигатель должен затрачивать определенную мощность. При этом он должен иметь опору, реакция которой уравновешивала бы момент, действующий в горизонтальной плоскости, от сил сопротивления несущего винта. Если такой опоры нет, то момент от сил сопротивления несущего винта, реактивный момент, будет передаваться корпусу вертолета через редукторы и их опоры в горизонтальной плоскости и заставит его вращаться в сторону, противоположную вращению винта.  [c.16]

Для каждого положения механизма вычисляются приведенный момент движущих сил приведенный момент сил сопротивления Мп и приведенный момент инерции механизма /,г. Один из моментов, например MS, приложенный к звену приведения со стороны двигателя, определяется на основании заданной функции Ми ц)), а другой, например Л1и, является результатом приведения внешних сил, действующих на звенья механизма. В формуле для определения Мп используется аналитическое выражение заданных внешних сил (например, давления на поршень компрессора), силы тяжести звеньев, а также аналоги скоростей.  [c.125]

Движение звеньев механизма происходит под влиянием действующих на них сил. Их величины, характер воздействия и точки приложения циклически изменяются по трем основным причинам изменение нагрузок сопротивления как на рабочем органе, так и в самом механизме изменение движущих сил, обусловленных процессами, происходящими в двигателе машины изменение положения звеньев за цикл работы механизма. Совокупное изменение условий нагружения приводит к ускорениям или замедлениям движения звеньев, что вызывает инерционные воздействия на них и, как следствие,— изменение скоростей. Следован ел ьно, кинематические параметры звеньев — функции внешних сил. Они зависят от масс звеньев и их распределения по ним с учетом конкретной формы и размеров. Задача определения закона движения звеньев о определенной геометрической формой, размерами и массой при известных внешних силах и моментах сил и законов их изменения во времени решается на основе обидах принципов теоретической механики и называется динамическим расчетом.  [c.278]

При начальной скорости, большей чем величина v , определяемая выражением (11.23), спутник, как показано в предыдущем параграфе, будет двигаться по эллиптической орбите, для которой точка А является перигелием. Если в точке Л, в которой выключен двигатель ракеты-носителя (н сопротивлением воздуха можно уже пренебречь), скорость ракеты не перпендикулярна к радиусу Земли и имеет достаточно большую величину, то дальнейшее движение будет происходить также по эллиптической орбите, но точка А уже не будет являться перигелием этой орбиты. Таким образом, для вывода спутника на круговую орбиту должны быть точно выдержаны определенные величина и направление скорости ракеты-носителя в момент выключения двигателей. При неточном выполнении этого условия орбита оказывается эллиптической. Поэтому практически орбиты спутников всегда оказываются эллиптическими, но чем точнее осуществлен запуск, тем более близкая к круговой орбита может быть получена.  [c.329]


Таким образом, параметрические колебания отличаются от вынужденных видом внешнего воздействия. При вынужденных колебаниях извне задана сила или какая-либо другая величина, вызывающая колебания, а параметры системы при этом остаются постоянными. Параметрические колебания вызываются периодическим изменением извне какого-либо физического параметра системы. Так, например, вращающийся вал некруглого сечения, имеющий относительно различных осей сечения различные моменты инерции, которые входят в характеристику жесткости при изгибе, испытывает поперечные колебания (см. с. 592) в определенной плоскости благодаря переменной жесткости, периодически изменяющейся за каждый оборот вала. Изменение физического параметра вызывается внешними силами. В приведенном примере внешним фактором является двигатель, осуществляющий вращение вала. Параметрические колебания не затухают при наличии сил сопротивления. Поддержание параметрических колебаний происходит за счет подвода энергии внешними силовыми воздействиями, изменяющими физические параметры системы.  [c.591]

Определение сил и их моментов. Силы и моменты движущих сил определяют в зависимости от вида двигателей, которые изучаются в специальных дисциплинах. Силы полезных сопротивлений определяют на основании исследований рабочих процессов машины. Силы тяжести звеньев определяют по массе т звеньев и гравитационному ускорению в точке пространства, в которой они находятся Рд = т . Силы трения твердых тел определяют по закону Кулона в зависимости от сил нормального давления F . = iF, где р — коэффициент  [c.78]

Необходимое давление распыла в открытых форсунках достигается интенсивной подачей топлива с помощью насоса при наличии определенного гидравлического сопротивления отверстия распылителя. Суще- ственным недостатком открытых форсунок является большое изменение давления впрыска при изменении числа оборотов коленчатого вала двигателя.  [c.428]

Механические характеристики. Перейдем теперь к определению закона движения. Машинный агрегат — это комплекс, состоящий из машины-двигателя, передаточного механизма и рабочей машины. В двигателе создается движущий момент (или движущая сила). В рабочей машине образуется момент (или сила) полезных сопротивлений. Двигатель и рабочая машина имеют собственные кинематические цепи, но при изучении движения агрегата удобно рассматривать его общую кинематическую цепь, не разделяя ее на составные части, т. е. на цепь двигателя, передаточного механизма и рабочей машины. При этом действие внешней среды на механизм изображается внешними моментами (или силами), движущим моментом (силой) и моментом (силой) полезных сопротивлений, приложенными соответственно к ведущему и ведомому звеньям.  [c.58]

Для определения положения нормали п—п вектор скорости точки касания начальных окружностей надо повернуть в сторону, противоположную направлению вращения ведущего колеса с внешними зубьями и по направлению вращения ведущего колеса с внутренними зубьями. При этом реакция, действующая на зуб ведущего колеса, всегда создает момент, направленный противоположно угловой скорости колеса, а реакция, действующая на зуб ведомого колеса, создает момент, направленный по угловой скорости этого колеса. При решении задач силового расчета зубчатых механизмов радиусы всех колес, угловая скорость oj ведущего звена 1 и момент сил полезных сопротивлений предполагаются заданными. Требуется определить реакции во всех кинематических парах и момент М-1 двигателя, который приводит в движение ведущее звено 1.  [c.370]

Основное назначение маховика состоит в сохранении заданных пределов изменения величины угловой скорости главного вала в установившемся движении машины. Величина пределов изменения определяется заданным коэффициентом неравномерности движения машины. При этом в соответствии с определением установившегося движения предполагается, что приток энергии за период равен ее расходу на преодоление сил сопротивлений в процессе работы. Не исключена, однако, возможность случайного нарушения равенства работ сил движущих и сопротивлений за период. Допустим, что произошел внезапный сброс нагрузки часть работающих станков, например, выключается по каким-либо причинам. В этом случае угловая скорость главного вала двигателя начнет возрастать. Возможна и обратная картина случайное увеличение потребляемой энергии или уменьшение подводимой энергии. В этом случае угловая скорость вала начнет уменьшаться. Для автоматического регулирования скорости в этих случаях пользуются регуляторами.  [c.395]

В механических системах колебания угловой скорости ведущего звена могут быть периодическими и непериодическими, или случайными. Периодическими называются такие колебания, когда угловая скорость повторяет свои значения через равные промежутки времени, кратные обычно частоте вращения звена. Периодические колебания скорости наблюдаются в механизмах и машинах, в которых силы, действующие на звенья, изменяются в определенной зависимости от угла поворота ведущего звена (двигатели внутреннего сгорания, поршневые насосы и другие подобные машины). Непериодические колебания угловой скорости вызываются изменением притока движущей энергии или изменением сопротивлений, преодолеваемых машиной.  [c.176]


При рассмотрении переходных и неустановившихся процессов в рабочих машинах, приводимых в движение электродвигателями, имеет место взаимное влияние машины, рассматриваемой как системы масс с упругими связями, двигателя и системы управления. Электрическая система должна быть представлена как определенное сочетание электрических контуров, состоящих из сопротивлений, индуктивностей и емкостей. Переходные процессы в механической и электрических системах связаны друг с другом.  [c.105]

Анализ зависимостей (о (ф) в трех указанных случаях показывает, что уточнение характеристики двигателя мало повлияло на результаты определения скорости звена приведения. Этого следовало ожидать, имея в виду величину отношения постоянных времени Т /Тм.ср и малое изменение (на 18%) приведенного момента инерции при постоянном приведенном моменте сопротивления.  [c.324]

Для установившегося режима работы при определении коэффициентов дифференциального уравнения (5.44) и функции W момент сопротивления и приведенный момент инерции с достаточной точностью могут быть определены исходя из усредненной угловой скорости двигателя 2д. Если коэффициенты уравнения (5.44) медленно изменяются во времени, то решение строи/ся  [c.178]

Двигатель представляется как источник вибрации с определенным механическим сопротивлением, измеренным со стороны опорных лап и известной выходной колебательной скоростью.  [c.215]

Для определения механических сопротивлений узлы двигателя подвешивались на резиновых шнурах так, что частоты собственных колебаний узлов на подвесках составляли менее 10 Гц, т. е. были значительно ниже частоты возбуждения.  [c.236]

Основным условием в процессе экспериментального определения механических сопротивлений деталей и узлов двигателя является требование приложения переменной возбуждающей силы в" том же месте и направлении, в каком приложена возмущающая сила в реальных условиях на работающем двигателе.  [c.236]

Исполнительный орган машины и детали ее привода изготовлены из упругого материала — стали. Поэтому поведение привода при резком торможении рабочего органа, вызванном столкновением его с таким препятствием, можно рассматривать как движение некоторой упругой системы, вдоль которой определенным образом распределены массы передач, валов, муфт, ротора двигателя и других движущихся деталей и к которой приложены момент, развиваемый двигателем Мд (ср), и некоторый возрастающий момент сопротивления М = + ЛМ (здесь — момент сопро-  [c.383]

На рис. 1. 3 показана характеристика асинхронного двигателя. При работе двигателя на верхней устойчивой ветви характеристики от 5 = о до 5 = и при изменении момента сопротивления от нуля до М, ах вне зависимости от продолжительности действия каждого значения указанного момента двигатель будет сохранять способность автоматически развивать движущий момент в соответствии с моментом сопротивления. Когда же момент сопротивления Мд достигнет значения Мо, т. е. превысит Мтах, то двигатель опрокинется и рабочая точка характеристики, перейдя на неустойчивую ветвь, может дойти до положения с1, соответствующего нулевой угловой скорости. Однако, если увеличенное значение момента сопротивления Мо будет действовать кратковременно, то остановки двигателя не произойдет, так как процесс опрокидывания двигателя, связанный с изменением скорости движущихся масс, требует определенного времени.  [c.419]

Ранее ставилась задача определения безопасной продолжительности повышенной нагрузки двигателя, при которой не происходит опрокидывания последнего. Однако для машин-орудий некоторых типов больший интерес представляет задача определения угла поворота ротора за время действия указанной повышенной нагрузки. В этом случае можно поставить задачу об определении необходимого махового момента всей движущейся системы, при котором не произойдет опрокидывания двигателя даже при весьма больших силах сопротивления, но действующих на протяжении ограниченного угла поворота ротора.  [c.422]

Здесь мы не касаемся вопросов энергетики, относящихся к определению сил, развиваемых двигателями, и вопросов технологии, позволяющих определить силы сопротивления рабочи.х машин. И те и другие силы будем считать заданными. Обыкновенно они задаются в виде так называемых механических характеристик.  [c.20]

Если механическую характеристику двигателя считать изменяющейся по параболическому закону уравнения (9), то задача об определении угловой скорости звена приведения машинного агрегата может быть решена при заданном постоянном приведенном моменте сил сопротивления. Пусть величина этого момента равна Мс и постоянная величина приведенного момента инерции масс звеньев механизма равна /, тогда для динамического исследования машинного агрегата можно воспользоваться следующим уравнением  [c.54]

Все многообразие сил, действующих в машине, делят на две большие группы движущие силы и силы сопротивления. Первые, сообщаемые электромотором, двигателем внутреннего сгорания или другими источниками движения, заставляют детали машины двигаться с определенной скоростью. Вторы — тормозят движение. Таких сил много, причем одни из них полезны, другие вредны. Это деление условно.  [c.111]

Совокупность проверок по определению технического состояния электродвигателей включает обнаружение обрывов обмотки двигателя измерение сопротивления изоляции определение коэффициента абсорбции изоляции обнаруже-  [c.272]

Муфта имеет два диска ведущий 1, связанный со звеном АВ и двигателем, и ведомый связанный с исполнительным механизмом. К звену I приложен движущий момент ТИд, а к звену 4 — момент сопротивления При стационарном движении этого механизма центробежные силы звеньев 2 и 3 вынудят группу B D занятг. определенное положение, и весь механизм будет вращаться с одной скоростью (o)i =  [c.361]

Для каждого механизма существует зависимость моментд на ведущем валу механи ма и двигателя от скорости его вращения — механические характеристики (см. гл. 20). Когда конкретный механизм приводится в движение двигателем определенного типа, то установившееся движение возможно только в случае пересечения их механических характеристик в точке А (рис. 22.3, а) приведенные моменты сил движущих и сил сопротивления одинако-  [c.283]

В части 1 рассмотрена теория одномерных газовых течений, на которой б зируются методы расчета реактивных двигателей, лопаточных машин, эжекторов, аэродинамических труб и испытательных стендов. Изложены теория пограничного слоя и теория струй, лежащие в основе определения сопротивления трения, полей скорости и температуры в соплах, диффузорах, камерах сгорания, эжекторах и т. п.  [c.2]

Вместе с тем многие вопросы, нанример определение сопротивления трения ц нолей скорости п температуры, построение картины течения в камере сгорания, эжекторе и сверхзвуковом диффузоре, выяснение силового и теплового воздействия выхлопной струи реактивного двигателя на органы управления и другие части летательного аппарата, а также на стенки испытательного стенда и т. п., не могут быть разрешены без привлечения дифференциальных уравнений гидрогазодинамики или уравнений пограничного слоя.. В связи с этим в кннге значительное внимание уделено основам гидродинамики, теории пограничного слоя и теории струй.  [c.9]


Определение основных размеров маслопроводов, систем водяного охлаждения, разного рода сопловых аппаратов и насадков, а также расчет водоструйных насосов, карбюраторов и т. д. производятся с использованием основных законов и методов гидравлики уравнения Бернулли, уравнения равномерного движения жидкости, зависимости для учета местных сопротивлений и формул, служащих для расчета истечения жидкостей из отверстий и насадков. Приведенный здесь далеко не полный перечень практических задач, с которыми приходится сталкиваться инже-нерам-механикам различных специальностей, свидетельствует а большой роли гидравлики в машиностроительной промышленности и ее тесной связи со многими дисциплинами механического цикла (насосы и гидравлические турбины, гидравлические прессы и аккумуляторы, гидропривод в станкостроении, приборы для измерения давлений, автомобили и тракторы, тормозное дело, гидравлическая смазка, расчет некоторых элементов самолетов и гидросамолетов, расчет некоторых элементов двигателей и т. д.).  [c.4]

Для определения требуемой характеристики тормозного регулятора п — / (Мр) необходимо знать а) характеристику двигателя п = f (Мдв) б) пределы изменения момента сил сопротивления и M maxi в) ДОпускаемос измснениб числа оборотов двигателя или рабочего валика механизма %in =  [c.385]

Плоским называется такой механизм, все точки звеньев кото poro движутся параллельно одной и той же неподвижной плоскости. Простейший плоский механизм состоит из одного подвижного звена и одного неподвижного, образующих вращательную пару (рис. 87). К таким механизмам относятся, например, электродвигатель, ротор которого является подвижным звеном, а статор неподвижным, или вентилятор с подвижным звеном в виде крыльчатки и т. д. К крыльчатке приложена сила сопротивления движению со стороны воздуха. Это сопротивление преодолевается движущей силой, развиваемой двигателем. В результате действия этих сил движение указанного подвижного звена будет происходить по определенному закону. Например, если сила сопротивления постоянная, то при установившемся движении будет постоянной и движущая сила, вследствие чего подвижное звено будет вращаться равномерно. Таким образом, звено I (см. рис. 87), имеющее одну степень свободы, в рассматриваемом случае оказывается динамически связанным закономерным изменением его переменного параметра — обобщенной координаты в виде угла поворота отрезка / относительно отрезка 2.  [c.129]

Дозвуковые и околозвуковые транспортные самолеты были предметом глубокого исследования НАСА с целью определения преимуществ, обеспечиваемых объединенным использованием нескольких прогрессивных технологических разработок в изделиях следующего поколения транспортной авиации [11]. Последние включают суперкритические несущие поверхности, эффективно работающие до скорости, равной 1 М рулевые поверхности крыла и внутренние пересечения, позволяющие предельно снизить околозвуковое лобовое сопротивление, обеспечить бесшумность двигателя и использовать перспективные материалы.  [c.72]

Из анализа, проведенного в пп. 14, 19, становится ясным, что явление неуправляемости системой замыкания может иметь место не только из-за возбуждения дополнительных крутильных колебаний в приводе машины, но также и за счет возрастания неравномерности вращения вала двигателя. При соблюдении условий динамической устойчивости (см. п. 28) для определения неравномерности хода, вызванной приращением замыкающего усилия, можно в первом приближении воспользоваться уравнением (3.138) при усреднении приведенного момента инерции и замене Л1д на ДЛ1д и на АМс, где АМд — добавка в движущем моменте при изменении момента сопротивления на  [c.243]

Определение целесообразных (стандартных) норм потребности в запасных частях базируется как на статистических данных, так и на следующих стандартах в виде испытаний автомобилей на износ и надежность на повыщенную проходимость на водонепроницаемость на воздействие высоких и низких температур при различной влажности на разгон и торможение, преодоление подъемов, динамичность, плавность хода, скорость, занос на долговечность пробега (на 30—40 тыс. км) с последующей разборкой на узлы и детали на способность к холодному пуску двигателя на шумность, тряску, вибрацию на устойчивость и управляемость, обзорность, комфортабельность сидений на сопротивление воздуха и обтекаемость на безопасность пассажиров и водителей на пыленепроницаемость на эффективность и долговечность агрегата, топливную экономичность, приемистость при работе карбюраторов при наклонном положении на прочность и работоспособность узлов ходовой части, рулевдго управления, коробки передач, подвески вес конструкции удобства ухода за автомобилем, длительность и т. п.  [c.328]

Для определения числа и величин ступеней сопротивлений наиболее употребителен графический метод (фиг. 4). Порядок расчёта на диаграмме строят скоростные характеристики двигателя при напряжениях У , /2 и т. д. соответственно используемым соединениям двигателей, -р устанавливают исходя из допустимых значений по условиям сцепления. Для моторных вагонов и трамвая при этом обычно принимается коэфициент сцепления, соответствуюпгий мокрым рельсам без применения песка, для электровозов — сухим рельсам. Целесообразно М принимать минимальным для реализации больших значений однако следует иметь в виду, что число ступеней при этом увеличивается и усложняется аппаратура управления. Для магистральных электровозов целесообразно учитывать понижение коэфициеита сцепления с увеличением  [c.448]


Смотреть страницы где упоминается термин Двигатели Сопротивления — Определение : [c.108]    [c.441]    [c.146]    [c.251]    [c.470]    [c.114]    [c.219]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.501 , c.502 ]



ПОИСК



Определение величины пусковых сопротивлений в цепи статора для двигателей с короткозамкнутым ротором

Сопротивление Определение



© 2025 Mash-xxl.info Реклама на сайте