Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания скоростей периодические

Кроме периодических колебаний скоростей, в механизме могут иметь место и непериодические колебания скоростей, вызываемые различными причинами внезапным изменением полезных или вредных сопротивлений, включением в механизм дополнительных масс и т. д. Такое внезапное изменение нагрузки иа механизм вызывает внезапное увеличение или уменьшение скорости его начального звена, и так как эти колебания скорости в некоторых случаях не имеют определенного цикла, то такие колебания скорости начального звена назовем непериодическими. Во многих механизмах мы наблюдаем оба вида колебаний скоростей.  [c.374]


Рассмотрение вопроса о регулировании движения механизма начнем с рассмотрения задачи о регулировании периодических колебаний скоростей во время его установившегося движения.  [c.375]

Для изучения периодических колебаний скоростей во время установившегося движения механизма или машины введем понятие о средней скорости начального звена и дальнейшее рассмотрение задачи будем вести для этого времени движения.  [c.375]

Как показано в 82, 2°, при периодических колебаниях скоростей начального звена машины (звена приведения механизма) во время установившегося и неустановившегося движений необходимо соединить начальное звено регулируемого объекта с особым механизмом, носящим название скоростного регулятора. Задача регулятора состоит в установлении устойчивого (стационарного) изменения скорости, режима движения начального звена регулируемого объекта, что может быть достигнуто выравниванием разницы между движущими силами и силами сопротивления. Если по каким-либо причинам уменьшается полезное сопротивление и регулируемый объект начинает ускорять свое движение, то регулятор автоматически уменьшает приток движущих сил. Наоборот, если силы сопротивления увеличиваются и регулируемый объект начинает замедлять свое движение, то регулятор увеличивает движущие силы. Таким образом, как только нарушается равновесие между движущими силами и силами сопротивления, регулятор должен вновь их сбалансировать и заставить регулируемый объект работать с прежними или близкими к прежним скоростями.  [c.397]

При значительных непериодических колебаниях скорости ведущего звена механизма (см. 1 гл. 7) возникает необходимость в применении специального устройства, предназначенного для поддержания постоянной скорости непрерывного движения или постоянной средней скорости периодического движения. Такое устройство носит название регулятора скорости. Регулятор скорости автоматически устраняет возникающую по каким-либо причинам в механизме разность между величинами движущих сил и сил сопротивления.  [c.111]

Если машинный агрегат не обладает свойством саморегулирования, то колебания скорости звена приведения не имеют периодического характера. Равномерность движения достигается применением специальных устройств — регуляторов скорости. Регуляторы скорости увеличивают или уменьшают мощность двигателя, сохраняя постоянство скорости ведущего звена механи.зма, т. е. регулирование осуществляется за счет изменения внешних воздействий на механизм со стороны двигателя.  [c.343]


Для машин характерно неравновесно-установившееся движение с периодическими колебаниями скорости внутри периода, т. е. неравномерное движение. Равномерного движения вообще не существует и даже ротор быстроходной турбины вращается с небольшой неравномерностью.  [c.194]

Дело в том, что, говоря о форме колебаний, можно подразумевать не только закон изменения смещения, но и закон изменения скорости и, наконец,, закон изменения ускорения. В случае, если смещение изменяется по гармоническому закону, скорость и ускорение также меняются по гармоническому закону (ибо производная от гармонической функции есть также гармоническая функция). Если же форма колебаний смещения отлична от гармонической, то форма колебаний скорости не только отлична от гармонической, но и отлична от формы колебаний смещения то же относится к скорости и ускорению, так как ни одна периодическая функция, кроме гармонической, не имеет производной, которая по форме совпадала бы с самой функцией. Поэтому только в специальном случае действия гармонической внешней силы на линейную систему гармонической оказывается форма колебаний как для смещений, так и для скоростей и ускорений. Для определенности мы будем ниже везде (если не оговорено иное) под формой колебаний понимать закон изменения смещения.-  [c.620]

Итак, рассмотрение колебаний атомов в одномерной цепочке, состоящей из атомов одного сорта, показывает, что при низких частотах колебаний и длинных волнах (малых волновых векторах k) характеристики волнового движения атомов оказываются близкими к соответствующим характеристикам для изотропного континуума и в пределе с ними совпадают. Однако с ростом k обнаруживается заметное различие этих характеристик выявляется дисперсия частоты, частота колебаний начинает периодически зависеть от k, причем максимальные значения частоты обнаруживаются на границе зоны Бриллюэна, при этих же k обращается в нуль групповая скорость. Плотность состояний вблизи границы зоны Бриллюэна имеет особенность корневого типа.  [c.214]

Регулятор должен быть устроен так, чтобы он не реагировал на периодические колебания скорости в противном случае орган, управляющий изменением движущих сил, все время будет колебаться, что, конечно, недопустимо. Таким образом, острая чувствительность регулятора нежелательна, и он должен начинать работать только в том случае, когда угловая скорость станет больше значения со акс или меньше значения со ин-  [c.324]

Регулятор подбирают с такой чувствительностью, чтобы он не реагировал на периодические колебания скорости и осуществлял регулирование лишь в тех случаях, когда угловая скорость превысит величину или упадет ниже о) экстремальных значе-  [c.376]

Колебания скорости входного звена при некоторых условиях выходят за пределы периодического изменения скорости установившегося режима. Возникают непериодические колебания скорости, характерные для переходных процессов. Переходным процессом называют переход регулируемого объекта из одного стационарного состояния в другое. В машинах такие процессы возникают при внезапных скачках или сбросе нагрузки, изменении количества подводимой энергии, при пуске, торможении и реверсировании хода машины.  [c.390]

Регулятор скорости подбирают с такой чувствительностью, чтобы он не реагировал на периодические колебания скорости при установившемся движении и регулировал подачу энергии, когда величина (о будет выше со акс или ниже со скоростей, допускаемых технологическим процессом.  [c.398]

Какие факторы вызывают периодические и непериодические колебания скорости входного звена машины  [c.398]

Чтобы привести механизм из положения соосности в положение, показанное на рис. 15.8, а, необходимо повернуть вал 3 на угол а вокруг шарниров В, В, а чтобы привести механизм из положения соосности в положение, изображенное на рис. 15.8, б, следует повернуть вал 3 на угол а уже с помощью шарниров А, А. Таким образом, при вращении валов J я 3 крестовина 2 непрерывно покачивается на шарнирах А, А и В, В на величину угла а, образованного осями валов. Вследствие этого покачивания вектор мгновенной угловой скорости крестовины периодически изменяется за каждый оборот вала. По этой причине при равномерном вращении вала 1 со скоростью u)i ведомый вал 3 вращается неравномерно. Колебания скорости соз тем значительнее, чем больше угол а. Этот недостаток устранен в так называемых синхронных карданах, имеющих несколько иное устройство.  [c.383]


Изменения угловой скорости звена приведения вызывают в кинематических парах дополнительные (динамические) давления, которые понижают общий к. п. д. машины, надежность ее работы И долговечность. Кроме того, колебания скоростей ведущего звена ухудшают рабочий процесс машин. Поэтому, поскольку эти колебания, обусловленные периодическим действием сил, полностью устранить нельзя, в зависимости от назначения проектируемой машины необходимо задаться величиной коэффициента неравномерности движения лишь в определенных пределах. Различают два типа колебаний скоростей ведущего звена за время установившегося движения механизма — периодические и непериодические. При установившемся периодическом режиме движения машины угловая скорость ее звена приведения изменяется периодически.  [c.386]

Кроме периодических колебаний скоростей, в механизме могут происходить и непериодические колебания, т. е. неповторяющиеся изменения скоростей, вызываемые различными причинами. Например, внезапное изменение нагрузки на механизм, включение в механизм добавочных масс и другие вызывают изменения угловой скорости главного вала в установившемся движении машины. Оба типа колебаний скоростей регулируются различным образом задачу ограничения периодических колебаний угловой скорости ведущего звена в пределах допускаемой неравномерности движения машины решают, насаживая на вращающееся звено дополнительную массу. Эту массу называют маховой массой, или маховиком. Ее выполняют в виде колеса, имеющего Массивный обод, соединенный со втулкой спицами. В случае же значительных непериодических колебаний скоростей задачу регулирования решают, устанавливая специальный механизм, называемый регулятором.  [c.387]

В механических системах колебания угловой скорости ведущего звена могут быть периодическими и непериодическими, или случайными. Периодическими называются такие колебания, когда угловая скорость повторяет свои значения через равные промежутки времени, кратные обычно частоте вращения звена. Периодические колебания скорости наблюдаются в механизмах и машинах, в которых силы, действующие на звенья, изменяются в определенной зависимости от угла поворота ведущего звена (двигатели внутреннего сгорания, поршневые насосы и другие подобные машины). Непериодические колебания угловой скорости вызываются изменением притока движущей энергии или изменением сопротивлений, преодолеваемых машиной.  [c.176]

При периодических колебаниях скорости требуемый коэффициент неравномерности [б ] можно обеспечить путем установки на один из быстроходных валов механизма инерционного диска или колеса с большим моментом инерции, называемого маховиком. Для регулирования непериодических колебаний угловой скорости применяются специальные устройства — регуляторы скорости.  [c.176]

Режим почти периодических колебаний, соответствующий левой окрестности зоны субгармонического захватывания второго порядка и области >0, показан на рис. 8, а, он получен при Х=0, v=l,9, iV =l,14 и 71/о=2,5. Из рисунка видны почти периодические колебания скорости источника ф в соответствии с почти периодическими колебаниями х, что обусловлено взаимодействием источника и колебательной системы. В правой окрестности области захватывания имели место аналогичные колебательные режимы.  [c.31]

Исследуем теперь, возможно ли возникновение в такой системе опасных крутильных колебаний при периодическом изменении крутящего момента на приводном валу. Периодические возмущения на ведущей звездочке могут вызываться имеющими место в цепном зацеплении жесткими ударами при входе в контакт с зубом очередного звена цепи, колебаниями мгновенной скорости цепи и другими причинами.  [c.287]

В этом случае задача о маховике становится более трудной, тем более что приходится одновременно определять момент инерции маховика и выбирать подходящий электродвигатель. Для машин ударного действия, для которых допускаются большие колебания скорости, с периодически постоянной нагрузкой задача может быть приближенно решена аналитически. В этом случае та же задача решается и методом последовательных приближений.  [c.101]

При сложении гармонических колебаний одного направления, но различных частот 1 и 0)2 в векторной диаграмме фиг. 2 следует положить, что векторы Л] и Л2 вращаются с различными угловыми скоростями Ш] и 2. Если частоты и 0)2 мало различаются между собой, то расхождение векторов Ai и Ао происходит весьма медленно, и результирующее движение рассматривается как синусоидальное колебание с периодически изменяющейся амплитудой — биение (си. фиг. 3 для случая Aj = А2).  [c.333]

Re p). Следует также иметь в виду, что при наличии периодического возмущения скорости жидкости значение критического числа Рейнольдса может быть меньше, чем для стационарного режима течения. Кроме этого, при высоких частотах и достаточно сложном сигнале возмущения скорости может генерироваться искусственная турбулентность под действием интенсивных акустических волн. Эти эффекты могут существенно повлиять на средний по времени коэффициент теплоотдачи. Как правило, интенсивные колебания скорости или давления жидкости приводят к увеличению среднего по времени коэффициента теплоотдачи. Рассмотрим результаты экспериментальных исследований.  [c.133]


Модуляция коэффициента демпфирования второго уравнения системы (19) приведет к периодическому изменению амплитуд обеих гармоник продольных высокочастотных колебаний скорости рабочей жидкости в системе. В связи с этим введем следующую замену переменных  [c.296]

Рассмотрим такой пример на турбине с противодавлением, работающей изолированно, по электрическому графику, периодически возникают колебания скорости вращения, так называемое качание регулирования. Через некоторое время после возникновения качание прекращается и регулирование работает нормально. Здесь возможны две модели (гл. 6) либо мала степень неравномерности регулирования, либо турбина имеет неудовлетворительное парораспределение. Первое можно проверить, сняв характеристику регулирования. Однако при изолированной работе характеристика, снятая только на холостом ходу, даст неточную величину местной степени неравномерности. Поэтому прибегнем к методу экзамена повысим или понизим противодавление. В первом случае степень неравномерности увеличится и качание регулирования должно уменьшится во втором — от понижения степени неравномерности качание увеличится. Мы активно вмешались в работу турбины, создали новые условия, как бы проэкзаменовали регулирование.  [c.23]

Здесь а и /3 — известные константы, f vl F — периодические функции г периода единица, а = тах / . Если при х = 0 колеблется скорость, то (Т = 1/2, /3 = 1. При колебании давления по закону р = = ро[1- -/(т)] имеем а = х/2, /3 = —1. Если в задаче о колебании скорости на правом конце трубы фиксировано давление, а не скорость, то J (i, X) = J (t, X) — вместо (3.1), а = 1/2, но /3 = —1. Такая задача рассматривалась, например, в [6-8, 10]. Ее решение практически совпадает с решением задачи о колебании давления.  [c.291]

Таким образом, периодическими колебаниями скоростей механизма называются колебания, при которых скорости всех звены в механизма имеют вполне определенные циклы, по истечении которых эти скорости принимают каждый раз свои первоначальные значения.  [c.374]

Регулирование периодических колебаний скоростей при уста-иовнпшемся движе1ши механизма обычно выполняется соответ-ствуюн им подбором масс его звеньев. Массы звеньев должны быть подобраны так, чтобы они могли аккумулировать все приращения кинетической энергии механизма, имеющие место при превыиге-нии работы движущих сил над силами сопротивления. Эта аккумулированная массами звеньев кинетическая энергия должна быть отдана механизму обратно, когда работа сил сопротивления будет превышать работу движущих сил.  [c.374]

Подбором масс звеньев механизма можно решить задачу о регулировании периодических колебаний скорости начального звена 1 рп его установившемся движении. В случае же непериодических колебаний скоростей при установившемся движении подбором Mfi его звеньев можно решить задачу о регулировании колебаний скоростей только в тех случаях, когда эти колебания незначительны. При з 1ачительных непериодических колебаниях скоростей задача о регулировании решается установкой специальных механизмов, регулирующих законы изменения или движущих сил, или сил сопротивления. Такие регулирующие механизмы получили название регуляторов.  [c.374]

Выше было показано, что движение началыгого звеиа тем ближе к равномерному, чем больше приведенный момент инерции или приведенная масса механизмов манн ны. Увеличение приведенных масс или приведенных моментов инерции может быть сделано за счет увеличения масс отдельных звеньев механизмов. Практически это увеличение масс производится посадкой на один из валов машины добавочной детали, имеющей заданный момент инерции. Эта деталь носит название махового колеса, или маховика. Задачей маховика является уменьшение амплитуды периодических колебаний скорости начального звена, обусловленных b ui-ствами самих механизмов машины или периодическими изменениями соотношений между величинами движущих сил н сил сопротивления.  [c.381]

Движение ведомой звездочки определяется скоростью Периодическое изменение этой скорости сопровождается непостоянством передаточного отношения i и дополнительными динамическими нагрузками. Со скоростью у, связаны поперечные колебания ветвей цепи и удары шарниров цепи о зубья звездочки (см. ин ке). КсзлеОания и  [c.248]

Установившееся движение. Скорость ведущего звена остается постоянной (равновесное движение) или колеблется около некоторого среднего значения (неравновесное движение . Обычно эти колебания носят периодический характер. При установившемся движении кинетическая энергия механизма в конце и гачале какого-либо промежутка времени одинакова Т = Тр = onst (в случае неравновесного движения этот промежуток принимается равным или кратным периоду движения механизма). Таким образом, из уравнения (4.12) следует  [c.61]

Неравновесно-установившееся движение и возможно потому, что давления, а также силы р и Рсопр не находятся в равновесии, т. е. не равны друг другу. При р >Рсопр движение ускоренное и кинетическая энергия звеньев будет возрастать при Рк< сопр движение замедленное и кинетическая энергия будет убывать— будут происходить периодические колебания скорости вращения вала.  [c.195]

Вследствие периодического изменения нагрузки и приведенной массы механизма при установившемся движении цикловых машин неизбежны колебания скорости входного звена. Рассмотрим динамограмму Ж (ф) механизма за цикл периодического установившегося движения, равный 2я (рис. 11.4), где Жд(ф)—кривая приве-Рис. 11.4. Динамограмма и тахограмма ЦИК- Денного момента движущих левого механизма СИЛ,Ж (ф)—моментасил со-  [c.364]

При установившемся движении угловая скорость начального звена или постоянная, или колеблется относительно среднего значения, причем эти колебания скорости являются периодическими и могут быть уменьшены путем установки маховика. Условием установившегося движения является равенство рабог сил движущих и сил сопротивления (по модулю) за каждый цикл движения. Если это условие нарушается вследствие уменьше1 ия или увеличения сил сопротивления, то скорость движения соответственно увеличивается или уменьшается. Для многих машин это изменение скорости недопустимо, и тогда возникает задача поддержания величины скорости на заданном уровне. С этой целью применяют регуляторы скорости, основанные на том, что при изменении скорости автоматически изменяется величина движущей силы, и условие установившегося движения сохраняется для любого значения силы сопротивления.  [c.308]

Если генератор электрического тока приводится в движение турбиной (паровой, газовой, гидравлической) или электродвигателем, то периодических колебаний скорости не будет, главное звено агрегата при установившемея движении будет вращаться равномерно вследствие того, что в этих двигателях рабочий процесс протекает не циклообразно, а непрерывно и при установившемся движении характеризуется постоянством движущего момента, как и в генераторе электрического тока вместе с тем мы будем иметь здееь дело с установившимся равновесным движением.  [c.202]


Под турбулентностью ветра мы понимаем колебания скорости и направления ветра около некоторых средних величин. В статье [1 А. А. Фридман высказывает хипотезу, что в атмосфере возникают периодические системы вихревых нитей, вызывающие периодические изменения скорости и направления ветра. Так как вертикальные составляющие вихря гораздо меньше горизонтальных [2], то можно ограничиться исследованием вихрей с горизонтальной осью. В указанной статье проф. Фридман исследует два кармановских типа расположения бесконечных периодических вихревых систем, а именно, парное и шахматное расположение, и дает формулы, при помощи которых возможно по наблюдениям над подходящими метеоролохическими элементами вычислять некоторые другие, характеризующие расположение вихревых нитей, а именно высоту над местом наблюдения, взаимные расстояния между вихрями и интенсивность вихревых нитей.  [c.46]

Н. С. Кондрашова [68] решен класс задач о параметрических колебаниях трубопроводов с протекающей внутри них жидкостью. Было, в частности, показано, что собственная частота изгибных колебаний трубопроводов зависит от скорости протекающей через него жидкости. Эта зависимость обусловлена центробежными и кориолисовыми силами, возникающими в жидкости при деформации трубопровода. Если жидкость, протекаюп ая через трубопровод, пульсирует, то частота колебаний трубопровода периодически меняется и, следовательно, приводит при определенных условиях к параметрическим колебаниям. Близкая задача о параметрических коле-  [c.14]

Наивысшим уровнем громкости обладают звуки в области частот 500—6 ООО гц. Этот диапазон частот соответствует человеческой речи, вследствие чего шумы в этом диапазоне частот оказывают самое неприятное воздействие на человеческое ухо и затрудняют слышимость голоса. Звуковые волны в тяго-дутьевых устройствах возникают в результате периодических аэродинамических процессов, всегда сопровождающих установившуюся работу вентилятора. Колебания скорости и давления в потоке, протекающем через вентилятор, служат причиной аэродинамического шума механические колебания элементов конструкции — причиной механического шума.  [c.106]

Колебания скорости, возникаюихие вблизи критической точки, не передаются вдоль потока, а разделяются благодаря отрыву в области за точкой перегиба линий тока. Последние исследования, проведенные цифровым методом, показали, что расположенную вблизи критической точки неустойчивую область нельзя отождествлять с периодическим отрывом, возникающим сразу же за носовой частью тонкого профиля ( передняя зона отрыва ). Точнее, речь идет о неустойчивой области в окрестности передней критической точки (более подходящим названием было бы граничная линия застойной неустойчивой зоны ). Опыты Пирси и Ричардсона ценны тем, что, помимо измерений на профиле крыла и профиле направляющей лопатки, они провели опыты с цилиндром, для которого также наблюдается неустойчивость вблизи передней критической точки. Для тонкого профиля при наличии зоны отрыва область с периодическим отрывом вихрей подвергается влиянию предшествующей. неустойчивости. Кроме того, на область неустойчивости вблизи критической точки в значительной степени влияет отсосная щель, расположенная за носовой частью. В действительности здесь наблюдается нарастание турбулентных пульсаций.  [c.261]

Примеры параметрически возбуждаемых колебаний в машиностроении. Параметрические колебания часто встречаются в задачах динамики механизмов и машин. Вал, сечение которого имеет неодинаковые главные жесткости при изгибе, может испытывать незатухающие поперечные колебания даже в том случае, когда он полностью уравновешен. Причиной поперечных колебаний является периодическое (при постоянной угловой скорости) изменение изгибных жесткостей относительно неподвижных осей. В неподвижной системе координат поперечные колебания вала описываются дифференциальными уравнениями с периодическими коэффициентами. Если использовать координатную систему, которая вращается вместе с валом, то придем к дифференциальным уравнениям с постоянными коэффициентами. Поэтому в данном примере изгибные колебания можно трактовать и как параметрически возбуждаемые колебания, и как автоколебания. Для вала, который может совершать поперечные колебания только в одной плоскости, причиной поперечных колебаний является периодическое изменение изгибной жесткости вала в этой плоскости. Примером системы с периодически изменяющейся приведенной массой служит шатунно-кривошипный механизм. Параметрическое возбуждение колебаний возможно во многих системах, где движение передается через упруго деформируемые звенья, например, в спарниковой передаче в локомотивах.  [c.116]

Используйте ONDU T для расчета колебаний скорости при полностью развитом течении в канале. Предположите, что гра-тиепт давления — это периодическая функция от времени. Выполните расчет нестационарного поля скорости. Вы увидите, что распределения скоростей при колеблющемся течении сильно отличаются от случая стационарного течения.  [c.279]


Смотреть страницы где упоминается термин Колебания скоростей периодические : [c.182]    [c.374]    [c.300]    [c.331]    [c.82]    [c.69]    [c.248]    [c.399]   
Теория машин и механизмов (1988) -- [ c.374 ]



ПОИСК



Звук создается колебаниями. Конечная скорость распространения звука. Скорость звука не зависит от высоты Опыты Реньо. Распространение звука в воде Опыт Уитстона Ослабление звука при увеличении расстояния Ноты и шумы. Музыкальные ноты создаются периодическими колебаниями Сирена Каньяр де ла Тура Высота тона зависит от периода Соотношения между музыкальными нотами. Одно и то же отношение периодов соответствует одинаковым интервалам во всех частях гаммы. Гармонические шкалы Диатоническая гамма. Абсолютная высота. Необходимость темперации. Равномерная темперация. Таблица частот. Анализ Ноты и тоны Качество звука зависит от гармонических обертонов. Ненадежность разложения нот на составляющие только при помощи уха Простые тоны соответствуют колебаниям маятника Гармонические колебания

Колебания периодические

Периодические колебания напора и скорости

Периодическое и непериодическое колебания скорости

Регулирование периодических колебаний угловой скорости

Регулирование периодических колебаний угловой скорости вращения главного вала машинного агрегата



© 2025 Mash-xxl.info Реклама на сайте