Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы Кулона

Но 1ю третьему закону Кулона, следовательно,  [c.69]

К составленным вьпие пяти уравнениям равновесия присоединяется еще одно уравнение, выражающее закон Кулона  [c.107]

Решение. Трение качения возникает, как известно, вследствие деформаций колеса и рельса. Момент пары трения качения по закону Кулона будет равен  [c.304]

По закону Кулона сила трения причем в данном слу-  [c.310]

Согласно закону Кулона,  [c.324]

Зависимость между силой трения и нормальным давлением определяется законом Кулона наибольшая величина силы трения скольжения пропорциональна нормальному давлению тела на поверхность  [c.83]


В 1781 г. Кулон установил основные приближенные законы для сухого трения скольжения при покое. В дальнейшем законы Кулона многократно проверялись другими исследователями. Но эти законы подтверждались в случае, когда поверхности тел не вдавливаются друг в друга и шероховатость не очень велика.  [c.63]

Законы Кулона можно установить на приборе, схема которого дана на рис. 65. На этом приборе, изменяя вес гири, можно изменять нормальное давление Р (или равную ему по величине нормальную реакцию N) между трущимися поверхностями. Изменяя же вес гирь Q, можно изменять силу, которая стремится двигать тело вдоль поверхности другого тела, являющегося связью. Очевидно, фго, если сила С) = О, то тело находится в равновесии и сила трения Р равна нулю.  [c.63]

Если силу С увеличить (при этом тело не скользит по поверхности, а находится в равновесии), то по условию равновесия возникает сила трения Р, которая равна, но противоположна активной силе Q. Нормальная реакция N равна по величине нормальному давлению Р. Увеличивая силу при одном и том же нормальном давлении Р, можно достичь и такого положения, когда ничтожно малое дальнейшее увеличение силы Q выведет тело нз равновесия, заставляя его скользить по поверхности связи. Очевидно, будет достигнуто предельное положение, при котором сила трения станет наибольшей и не сможет уравновешивать силу (3 при ее дальнейшем увеличении. Изменяя силу нормального давления Р, можно исследовать, как изменяется при этом предельная сила трения Ртах. Можно также исследовать влияние на предельную силу трепня величины плош,ади соприкосновения тел, сохраняя при этом величину нормального давления, а также влияние материала тел, характера обработки поверхностей и других факторов. Такие опыты позволяют проверить законы Кулона для сухого трения скольжения.  [c.64]

Законы Кулона как приближенные справедливы и при скольжении одного тела по поверхности другого с некоторой относительной скоростью. При этом коэффициент трения скольжения зависит от относительной скорости скольжения. Для большинства материалов он уменьшается с увеличением относительной скорости скольжения, но для некоторых материалов, наоборот, увеличивается (трение кожи о металл).  [c.65]

Но по третьему закону Кулона  [c.65]

Законы Кулона можно установить на приборе, схема которого дана иа рис. 61 На этом приборе, изменяя вес гири, можно изменять нор-1. альное давление Р (или равную ему нормальную реакцию М) между  [c.64]


Но по третьему закону Кулона, f тих  [c.66]

Для определения момента трения в винтовой паре (рис. 20.13, а) полагаем, что давление от внешней нагрузки Е по поверхности витков распределяется равномерно и закон Кулона применим для эле-  [c.252]

Угол, конус, сила, наличие, величина, отсутствие, коэффициент, пример, свойства, виды, теория. .. трения. Законы Кулона. .. для трения.  [c.89]

Заметим, что закон Кулона (2.9) перестает выполняться точно, если заряды движутся. Электрическое взаимодействие движущихся зарядов оказывается сложным образом зависящим от их движения. Одну из частей этого взаимодействия, обусловленную движением, называют магнитной силой (отсюда и другое название данного взаимодействия —электромагнитное). При малых (нерелятивистских) скоростях магнитная сила составляет пренебрежимо малую часть электрического взаимодействия и оно с высокой степенью точности описывается законом  [c.44]

Закон Кулона. Законы взаимодействия неподвижных электрических зарядов изучает электростатика. Основной закон электростатики был экспериментально установлен французским физиком Шарлем Кулоном (1736—1806) в 1785 г. В опытах Кулона измерялись силы взаимодействия заряженных шаров. Опыты показали, что модуль силы Fg взаимодействия двух точечных неподвижных заряженных тел прямо пропорционален произведению абсолютных значений зарядов qi и Q2 и обратно пропорционален квадрату расстояния г между телами  [c.131]

Электрическая постоянная. Коэффициент пропорциональности f в выражении закона Кулона в системе СИ равен  [c.131]

С использованием электрической постоянной закон Кулона имеет вид  [c.132]

Электрическое поле. Взаимодействие зарядов по закону Кулона является экспериментально установленным фактом. Однако математическое выражение закона взаимодействия зарядов не раскрывает физической картины самого процесса взаимодействия, не отвечает на вопрос, каким путем осуществляется действие заряда q на заряд q .  [c.132]

Количественное выражение электростатического взаимодействия в теории дальнодействия и в теории близкодействия имеет один и тот же вид (закон Кулона). Поэтому на основе изучения законов электростатики нельзя сделать обоснованный выбор между этими двумя теориями.  [c.132]

Используя закон Кулона и определение понятия напряженности поля, получим выражение для модуля напряженности Е злектрического поля в некоторой точке Л на расстоянии г от точечного заряда q. Если в точку А поместить точечный заряд gi, то на него будет действовать сила, по закону Кулона равная  [c.133]

Уменьшение напряженности электрического поля в диэлектрике в е раз по сравнению с напряженностью поля в вакууме приводит к такому же уменьшению силы электростатического взаимодействия точечных электрических зарядов в диэлектрике. Поэтому закон Кулона для случая взаимодействия электрических зарядов в диэлектрике имеет вид  [c.143]

Итак, вспомним законы электрического и магнитного полей. Первый из них — основной закон электростатики — закон Кулона. Как следствие этого закона, формулируется теорема Гаусса  [c.16]

Для сравнения действия электрических и магнитных сил с действием силы тяжести надо вспомнить, что на материальную точку массой М, находящуюся у поверхности Земли, действует сила тяжести, равная F = —Mgz, где z — единичный вектор, направленный от центра Земли. Вспомните также, что одноименные точечные электрические заряды, согласно закону Кулона, отталкиваются друг от друга с силой, обратно пропорциональной квадрату расстояния между ними и направленной вдоль линии, соединяющей заряды. Величина этой силы равна  [c.113]

В гл. 3 вектор Е(г) определялся как сила, действующая на единичный положительный заряд, находящийся в покое. В соответствии с законом Кулона Е(г) можно вычислить из соотношения  [c.167]

Из закона Кулона находим, что  [c.169]

D/e2)exp(I0- ) 10- °, т. е. оно ничтожно мало. Для сил взаимодействия между двумя электронами закон Кулона точно-выполняется вплоть до самых малых известных нам расстояний между электронами. Однако электроны, помимо заряда, имеют магнитный момент, а сила взаимодействия магнитных моментов  [c.268]


Ехли в момент прижатия тормоаной колодки к тормозному шкиву последний вращался с некотрой угловой скоростью и если принять, что в момент начала контакта колодки со шкивом сразу вступает в силу закон Кулона, то следует  [c.71]

В соответствии с законом Кулона сила взаимного притяжения (или отталкивания) двух заряженных частиц также определяется формулой (39), но коэффициент а в этом случае будет иным. Поэтому задача об электрическом взa fMoдeй твии тоже приводит к исследованию движения в центральном поле с потенциальной энергией, которая выражается формулой (40). Такого рода поля называются кулоновыми.  [c.89]

Трение скольжения. В первом приближении сила нежаа-костного скольжения прямо пропорциональна силе N нормального давления между поверхностями а направлена в сторону, противоположную относительному движению (закон Кулона)  [c.70]

Q выведет тело из равновесия, заставляя его скользить по поверхности связи. Очевидно, будет достигнуто предельное положение, при котором сила трения станет наибольшей и не сможет уравновешивать силу Q при ее дальнейшем увеличении. Изменяя силу нормального давления Р, можно исследовать, как изменяется при этом предельная сила трения Fmax- Можно также исследовать влияние на предельную силу трения площади соприкосновения тел, сохраняя при этом нормальное давление, а также влияние материала тел, характер обработки поверхностей и другие факторы. Такие опыты позволяют проверить законы Кулона для сухого трения скольжения.  [c.65]

Из опытов по рассеянию элементарных частиц известно, чта на малых расстояниях (во много раз меньших, чем размеры атома) закон притяжения между двумя нуклонами (протонами или нейтронами) сильно отличается от закона Кулона, согласно-которому потенциальная энергия взаимодействия двух частиц равна е /г. Существуют особые ядерные силы притяжения, которым соответствует приблизительно такая зависимость потен циальной энергии от расстояния между частицами  [c.268]


Смотреть страницы где упоминается термин Законы Кулона : [c.67]    [c.41]    [c.51]    [c.326]    [c.64]    [c.68]    [c.64]    [c.65]    [c.68]    [c.225]    [c.127]    [c.131]    [c.133]    [c.198]    [c.113]   
Смотреть главы в:

Курс теоретической механики  -> Законы Кулона


Курс теоретической механики 1973 (1973) -- [ c.91 , c.92 ]

Курс теоретической механики 1981 (1981) -- [ c.168 ]

Теоретическая механика (1988) -- [ c.107 , c.108 ]



ПОИСК



Взаимодействие двух заряженных частиц по закону Кулона . Взаимодействие двух молекул

Закон Авогадро Кулона

Закон Авогадро Кулона для точечных зарядов

Закон Амонтона — Кулона

Закон Гаусса Кулона

Закон Гука Кулона Г.-Амоигона

Закон Кулона магнитный

Закон Кулона электрический

Закон движения толкателя Кулона

Закон трения Кулона

Законы Кулона-Морена

Кулон

Кулона закон для точечных зарядов



© 2025 Mash-xxl.info Реклама на сайте