Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение деформации упругой жидкости

Уравнение деформации упругой жидкости  [c.73]

Для более сложных материалов, которые обладают некоторой степенью упругости, внутренняя энергия может обратимо запасаться вследствие деформации, и энергетическое уравнение состояния необходимо содержит кинематические независимые переменные. Очень немного известно о форме энергетического уравнения состояния для реальных упругих жидкостей, т. е. о приемлемых определяющих предположениях относительно внутренней энергии. Это положение ставит ряд проблем, которые будут подробно обсуждены в последних главах. Вообще говоря, можно установить, что механика неньютоновских жидкостей занимается преимущественно рассмотрением импульса, и в настоящее время принцип сохранения энергии может дать лишь незначительную информацию.  [c.15]


Для различных сплошных сред зависимости тензора напряжений от тензора скоростей деформаций отличаются друг от друга. Для упругих сплошных сред тензор напряжений зависит от т е н з о р а деформаций. Зависимость между тензорами напряжений и скоростей деформаций часто называют реологическим, уравнением. Сформулируем реологическое уравнение в тензорной форме для сплошных сред, называемых жидкостями, для которых тензор напряжений не зависит от тензора деформаций. К жидкостям относятся обычные капельные жидкости, например вода и газы. При.мером газа является воздух при нормальных атмосферных условиях.  [c.553]

Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]

В первом из них можно использовать предположение, которое подтверждается экспериментами с несжимаемыми жидкостями, о том, что вязкие эффекты могут быть представлены полностью через коэффициент вязкости л, связывающий касательное напряжение и скорость деформации. Это — случай полной аналогии с уравнениями для упругих твердых тел, и мы принимаем  [c.110]


Более того, кинетическая теория и ее обобщение на высокоэластические жидкости (глава 6) представляется единственной молекулярной теорией для полимерных систем (и возможно также для любых систем), которая развита настолько, что позволяет получать полные реологические уравнения состояния в форме, пригодной для приложения к любому типу истории деформации, не ограниченному малыми деформациями и малыми скоростями деформации. В главе 8 будет показано исключительное разнообразие возможных форм реологических уравнений состояния для изотропных упругих жидкостей и твердых тел, отличных от идеально упругих веществ. Поэтому маловероятно, чтобы корректные уравнения для любого заданного материала можно было бы определить на основании только лишь результатов опытов. Любая молекулярная теория, позволяющая сделать предпочтительный выбор одной формы уравнения перед другой, может оказаться ценной.  [c.112]

И. С. Громека (1851—1889) заложил основы теории так называемых винтовых потоков и потоков с поперечной циркуляцией, получивших большое практическое значение. Он исследовал неустановившееся ламинарное движение вязкой жидкости в цилиндрических трубках и изучал влияние деформации упругих стенок на движение жидкости эти исследования представляют большой интерес для физиологии. Получил в новой форме уравнения гидродинамики, носящие название уравнений Громеки — Ламба.  [c.8]

Задача о динамических деформациях тела, взаимодействующего с идеальной сжимаемой жидкостью, формулируется следующим образом. В уравнения динамики упругого тела в качестве поверхностной нормальной нагрузки добавляется давление в жидкости на поверх-  [c.284]

Обращает на себя внимание различие в схеме использования законов, связывающих напряжения и деформации малого элемента в твердом теле, а также касательные напряжения и скорости деформации в жидкости. В теории упругости эти соотнощения используются для пересчета напряжений в деформации или обратно, а в механике жидкости аналогичные соотнощения вводятся в систему уравнений Навье-Стокса, относящуюся к расчету напряженного состояния.  [c.34]

Для замыкания уравнений системы (3.5) необходимо найти другой частный случай уравнений совместности деформаций, учитывающий наличие у среды свойства текучести. Такая система уравнений должна содержать щесть уравнений, как и для твердого тела, которыми можно будет дополнить систему уравнений движения жидкости. Таким образом, схема замыкания уравнений движения в жидкости должна быть такой же, как и в другом разделе механики сплощной среды - твердом теле. Аналогично методу рещения задачи теории упругости должны существовать и уравнения пересчета результатов расчета поля давлений в поле (перемещений) или скоростей потока жидкости и обратно.  [c.91]

Отметим аналогию между динамикой упругого тела при антиплоской деформации и динамикой идеальной сжимаемой жидкости. Линеаризованное уравнение относительно потенциала, определяющего безвихревое движение идеальной упругой жидкости, совпадает с первым из уравнений (1.4), в котором, однако, следует изменить значение постоянной, а именно в выражении = (1/р)(/С + 4ц/3) положить ц = О (жидкость идеальна - не сопротивляется сдвигу). Второе уравнение удовлетворяется тождественно, так как движение жидкости безвихревое. Обычно состояние жидкости описывают полями скоростей и давлений  [c.177]

Если попытаться включить понятие упругости в реологическое уравнение состояния, то сразу же столкнемся с основной проблемой определения упругости и жидкости . Интуитивно упругость представляется таким свойством материалов, которое предполагает, что внутренние напряжения определяются деформациями. В свою очередь, деформация может быть определена лишь в терминах конфигурации отсчета, т. е. через некоторое понятие предпочтительной формы рассматриваемого материала. Деформацию понимают как отклонение от этой предпочтительной формы.  [c.74]


Трусделл [16] предложил модель реологического уравнения состояния, которое, удовлетворяя принципу объективности поведения материала, объединяет оба понятия — упругость и текучесть — в единые рамки. Жидкость с конвективной упругостью определяется как материал, для которого напряжение зависит от деформации (т. е. как упругий материал ) однако эта деформация определяется не в терминах предпочтительной формы, а через отличие конфигурации материала в момент наблюдения (когда измеряется напряжение) от конфигурации материала в некоторый фиксированный момент, предшествующий моменту наблюдения.  [c.74]

Если исследовать в общем виде задачу о распространении волн в простых жидкостях с исчезающей памятью, то скорость распространения оказывается равной корню квадратному из отношения модуля упругости и плотности. Модуль упругости должен оцениваться локально величиной ц/Л он определяется только при распространении волны в покоящейся среде. Волны ускорения (т. е. разрывы ускорения, соответствующие разрывам скорости деформации) могут затухать в процессе их распространения, но могут также и возрастать по амплитуде, перерождаясь в ударные волны (разрывы скорости) за конечное время. Последняя ситуация возникает при условии, что начальная амплитуда волны достаточно велика, и при условии, что уравнение состояния в достаточной степени нелинейно. Интересно, что волна, распростра-  [c.296]

Граничные условия к уравнениям равновесия не могут быть установлены в общем виде они зависят не только от упругой энергии (36,1), но и от конкретного рода взаимодействия жидкости с ограничивающей ее стенкой эта поверхностная энергия должна была бы быть включена в полную свободную энергию, минимальность которой определяют условия равновесия. Фактически эти поверхностные силы обычно настолько велики, что именно они устанавливают направление п на границе, не зависящее от характера деформации в объеме образца. Если граничная твердая  [c.193]

Второе дифференциальное уравнение гидравлического удара вытекает из принципа сохранения массы жидкости, являющегося обобщением обычного в гидравлике уравнения сплошности. Оно учитывает как упругие деформации трубопровода, так и изменение плотности жидкости от давления.  [c.15]

Как будет показано, задача расчета упругого восстановления для жидкости, реологические уравнения состояния которой заданы, не имеет себе аналога в теории идеально упругих тел. При всякой деформации идеально упругое твердое тело обладает единственным ненапряженным состоянием. К нему оно возвращается мгновенно, как только напряжения упадут до нуля. Для не идеально упругого твердого тела может представить интерес задача вычисления последовательности состояний, через которые совершается возврат к ненапряженному состоянию.  [c.164]

Расчеты упругого восстановления, связанного с конечными деформациями, по-видимому, представляются значительно более трудными, нежели, к примеру, вычисление напряжений при заданной истории течения. Правда, здесь еще должна играть роль и форма, в которой задано реологическое уравнение состояния. В случае эластичной жидкости с уравнениями типа (6.9) переменные формы будут входить в подынтегральное выражение и тогда вычисление упругого восстановления (когда напряжение задано, начиная с некоторого момента) должно включать в себя решения интегрального уравнения для неизвестных  [c.166]

Реологические уравнения состояния, полученные и исследованные в предыдущих главах, являются, по-видимому, простейшими уравнениями, пригодными для описания напряжений, возникающих в упругих телах и жидкостях при конечных деформациях. Есть все основания полагать, что уравнения каучукоподобного тела, на самом деле, отражают свойства каучука и других полимеров в высокоэластическом состоянии (ср. главу 10). Однако до сих пор мы не располагаем достаточно проверенными данными для того, чтобы подтвердить или опровергнуть аналогичное утверждение относительно уравнений высокоэластической жидкости, приведенных в главах 6 и 7. Рассмотренные уравнения позволили проиллюстрировать большое разнообразие реологических эффектов и установить некоторые связи, существующие между ними. Важной особенностью изучаемого предмета является богатство и разнообразие мыслимых и возможных экспериментальных исследований, проведение которых может в свою очередь привести к строгой проверке и уточнению теорий.  [c.202]

Расчет величины ударного давления производят, пользуясь уравнением живых сил, Согласно которому кинетическая энергия движущейся жидкости преобразуется в работу упругой деформации стенок трубы и сжатия жидкости. Для случая мгновенного полного перекрытия прямолинейного отрезка простого трубопровода, заполненного движущейся жидкостью, ударное повышение давления может быть вычислено по уравнению Н. Е. Жуковского (см. стр. [36])  [c.104]

Формальная теория вязко-упругого поведения была предложена в работе Д. Олдройда [26], посвященной изложению инвариантного описания движения сплошной среды при наличии конечных упругих деформаций. Им было показано, что инвариантная процедура формальных обобщений простых реологических зависимостей на случай произвольных деформаций упруго-вязкдй сплошной среды является отнюдь не однозначной. В качестве простого примера справедливости этого положения им была рассмотрена простая задача о движении жидкости с одним временем релаксации и одним временем запаздывания в зазоре коаксиально-цилиндрического вискозиметра при различных обобщениях реологического уравнения, построенного для случая малых деформаций. Оказалось, что в зависимости от обобщения этой модели эффект нормальных напряжений существенно изменяется.  [c.31]


В основу вывода уравнений движения вязкой жидкости Пуассон положил своеобразный анализ деформации частиц среды за бесконечно малые промежутки времени, представляя каждую элементарную деформацию состоящей из двух процессов — упругой деформации согласно уравнениям теории упругости и последующего перераспределения (выравнивания) давлений в жидкости. Применение этих рассуждений привело Пуассона к прспорцио-нальности касательных напряжений скоростям деформации частиц. Однако в результате он получил уравнения движения, содержащие формально не две, а три физические характеристики жидкости (помимо плотности). Причиной этого было отсутствие достаточно строгого определения равновесного давления в потоке вязкой жидкости. Впрочем для малосжимаемой капельной ншдкости и адиабатического движения газа Пуассон свел число независимых физических характеристик жидкости к двум, в результате чего его уравнения движения приняли форму, близкую к точным уравнениям движения вязкой жидкости.  [c.67]

В статье, опубликованной в 1843 г., Сен-Венан ссылается на цитированные выше работы Навье, Пуассона и Коши и показывает возможность вывода уравнений движения вязкой жидкости с помощью видоизменения положений теории упругости о пропорциональности касательных напряжений деформациям сдвига без применения гипотез о притяжении и отталкивании отдельных частиц. Он вводит в рассмотрение направления главных скоростей скошения и главных тангенциальных напряжений, принимает гипотезу о совпадении этих направлений при движении жидкости и в конце концов получает два вида соотношений 1) соотношения пропорциональности разностей нормальных напряжений разностям соответственных скоростей удлинений и про-цррциональности касательных напряжений соответственным скоростям сдвига с общим коэффициентом пропорциональности, представляющим собой коэффициент вязкости жидкости, и 2) соотношение, связывающее линейной неоднородной зависимостью среднее арифметическое от нормальных напряжений со скоростью объёмного расширения. Из этих соотношений Сен-Венан получает соотношения Пуассона и Коши для отдельных компонент напряжения. В другой статье, в том же томе Докладов Парижской Академии наук (стр. 1108—1115) Сен-Венан применяет уравнения движения вязкой жидкости к случаю течения  [c.19]

Уравнения движения. Полная система динамических уравнений движения произвольной насыш енной пористой среды была составлена первоначально Я. И. Френкелем (1944). В основу им были положены уравнения движения твердой и жйдкой фаз, уравнение неразрывности для жидкости, уравнения упругих связей деформаций твердой фазы с напряжениями, а также некоторое замыкаюш ее соотношение для пористости. В результате у Френкеля фигурировали пять параметров упругих связей два модуля упругой объемной сжимаемости твердой фазы (скелета среды и материала частиц), сжимаемость жидкости, модуль поперечного сдвига < келета среды и некоторый дополнительный параметр замыкаюш его соотношения для пористости. Л. Я. Косачевский (1959), воспользовавшись вслед за М. А. Био условием суш ествования упругого потенциала рассматриваемой среды, выразил дополнительный параметр Френкеля через остальные четыре.  [c.592]

Основываясь на тезисе о сушествовании корректного математического описания для процесса движения материальной среды в любой области классической механики, предложен другой путь вывода уравнений движения вязкой жидкости, который повторяет процесс вывода, характерный для системы Навье, из теории упругости. В основе этого вывода лежит уравнение движения жидкости в напряжениях. Этот путь позволяет избежать ряда несоответствий, отмеченных в главе 1, и отказаться от использования при выводе системы уравнений Навье-Стокса понятия скорости угловой деформации частицы.  [c.7]

В некоторых случаях многофазная смесь может быть описана в рамках одной из известных классических моделей, в которых неоднородность отражается в значениях модулей, коэффициентов сжимаемости, теплоемкостей и т. д. (заранее определяемых через физические свойства фаз), т. е. только в уравнениях состояния смеси (см. 5 гл. 1). Например, жидкость с пузырями может иногда описываться в рамках идеальной сжимаемой жидкости, а грунт — в рамках упругой или упруго-пластической модели. Но при более интенсивных нагрузках, скоростях движения или в ударных процессах эти классические модели обычно перестают работать и требуется введение новых моделей и новых параметров, в частности, последовательно учитывающих неоднофазность, а именно существенно различное поведение фаз (различие плотностей, скоростей, давлений, температур, деформаций и т. д.) и взаимодействие фаз между собой. При этом проблема математического моделирования без привлечения дополнительных эмпирических или феноменологических соотношений и коэффициентов достаточно строго и обоснованно (например, методом осреднения более элементарных уравнений) может быть решена только для очень частных классов гетерогенных смесей и процессов. Эти случаи тем не менее представляют большое методическое значение, так как соответствующие им уравнения могут рассматриваться в качестве предельных или эталонов, дающих опорные пункты при менее строгом моделировании сложных реальных смесей, с привлечением дополнительных гипотез и феноменологических соотношений. Два таких предельных случая подробно рассмотрены в 5, 6 гл. 3.  [c.6]

Для выяснения причин, вызывающих неустойчивую работу, рассмотрен объемный гидропривод, состоящий из насоса, гидравлического мотора и соединяющего их трубопровода. При составлении дифференциальных уравнений вращения вала учтена упругость рабочей жидкости, сжимаемость паров и газов, а также деформация корпусов пасоса, гидромотора и их трубопровода. Выведены формулы возрастания давления во входной камере гидромотора ири неиодвнжном и вращающемся вале.  [c.344]

ЗАКОН [Гей-Люссака объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов реакции как небольшие целые числа Генри масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа Гука механическое напряжение при упругой деформации тела пропорционально относительной деформации Дальтона (кратных отношений если два элемента образуют друг с другом несколько химических соединений, то весовые количества одного из элементов, приходящиеся в этих соединениях на одно и то же количество другого, относятся между собой как небольшие целые числа общее давление газовой смеси равно сумме парциальных давлений, т. е. сумме давлений газовых компонентов ) Гульденберга и Вааге при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, причем каждая концентрация входит в произведение в степени, равной коэффициенту, стоящему перед формулой данного вещества в уравнении реакции Дебая теплоемкость кристалла при низких температурах пропорциональна третьей степени абсолютной температуры его движения точки положение материальной точки в пространстве при действии на нее внешних сил определяется зависимостью расстояния точки  [c.232]


Существует обширный класс веществ, которые при деформации проявляют как вязкостные, так и упругие свойства. Их принято именовать вязко-упругими. Описание свойств подобных тел в последнее время привлекает к себе много внимания. При составлении реологических уравнений состояния вязко-упругих сред широко используется феноменологический метод моделей. Принимают, что поведение той или иной среды описывается в первом приближении некоторой моделью, составленной из пружин и поршней. При этом деформация пружины в модели описывает упругую деформацию в среде, а движение поршкей в вязкой жидкости— необратимые деформации вязкого течения. На рис. 8 изображены модели простейших вязко-упругих сред а) максвелловское тело б) тело Кельвина-Фойгта в) тело Бургерса-Френкеля. Реологические уравнения состояния можно составить, рассматривая  [c.15]

Р. С. Ривлиным [34] были предложены общие уравнения реологического состояния для упруго-вязкой жидкости при наличии зависимости напряжений от скоростей и ускорений деформаций. Из общих теорем тензорного анализа известно, что при наличии такого рода зависимостей тензор напряжений будет квадратичной функцией как от тензора скоростей деформаций, так и от тензора ускорений деформаций со скалярными коэффициентами, зависящими от инвариантов указанных кинематических тензоров. Совершенно очевидно, что наличие квадратичных чле7юв в тензорных уравнениях реологического состояния всегда приводит к появлению нормальных напряжений для случая течения жидкости в условиях простого сдвига. Однако наличие большого числа  [c.31]

Сказанное поясняет идею, впервые предложенную в 1868 г. Максвеллом и обычно формулируемую так Вязкую жидкость можно рассматривать как релакси-рующее упругое твердое тело . Максвелловская формулировка была упрощенной и для своего применения к реальным (неидеализированным) материалам нуждалась в обобщении. Такое обобщение было проведено Генки Р], который использовал соотношения между напряжениями и конечными деформациями, отличные от применявшихся выше уравнений (4.9).  [c.134]

В твердом теле, т. е. в области давлений Р и температур Т, ограниченной линией плавления, деформации являются упруг ми или пластическими. Впрочем, в ряде сред наблюдаются сложные деформации типа вязкоупругих, упругопластических или вязкопла-стических. В областях жидкости, газа и нлазмы чаще всего дефо<р-мации носят вязкий характер. Система уравнений в частных производных, описывающих поведение сплошной среды, содержит три группы уравнений. К первой относятся законы сохранения массы, количества движения и энергии. Тензорный характер напряжений  [c.11]

Чтобы перейти от структурной формулы (X. 1) к реологическому уравнению, заметим, что в него будут входить четыре реологических коэффициента два — вязкости и два — упругости. Если рассматривать сдвиг (или более общий случай деформации формоизменения), то будут входить обычная вязкость (т]) в комплекс М и вязкость твердого тела t]j в комплекс К модуль сдвига жидкости jij в первом и обычный модуль сдвига [х во втором случае. Джеффрис (1929 г.), который первым предложил реологическое уравнение для комплекса М—К, заключил следующее.  [c.171]

Подобно Росси, Файлон и Джессоп пробовали согласовать показательные кривые с их кривыми времени растяжения и времени оптического отставания, исходя из предварительной теории, согласно которой напряжение состоит из двух частей упругой и вязкой. Подобное смешанное напряжение возникло бы, если бы мы предположили, что материал состоит из смеси упругого твердого тела и вязкой жидкости, причем первое образует, так сказать, каркас, промежутки которого плотно заполнены вторым. Делая дальнейшее предположение, что гидростатическое давление" в уравнении Стокса для движения вязкой жидкости должно быть пропорциональным приложенному растяжению Т и равным 7Г, где 7 есть некоторая постоянная величина, они пришли к нижеследующим уравнениям для деформации s и относительного отставания г на единицу толщины  [c.231]

Это соотношение соответствует разложению (1.6) для уравнения состояния газа или жидкости. Наряду с модулями всестороннего сжатия и сдвига в формулу (2.13) входят еше три константы А, В, С, назьюае-мые модулями треты го порядка, или нелинейными модулями упругости, в связи с тем что они являются коэффициентами при кубичных членах разложения внутренней энергии по инвариантам тенэора деформации. Таким образом, нелинейные деформации изотропного упругого тела в соответствии с формулой (2.13) характеризуются пятью параметрами (пятиконстантная теория). Подставляя (2.13) в (2.11), получим уравнение  [c.14]

Расчет процесса консолидации с использованием уравнения теплопроводности подкупает своей простотой. Соответствующая полная схема расчета неодномерных задач была развита В. А. Флориным [214] и использована для ряда конкретных задач (см., например, [223]). Согласно В. А. Флорину в любой момент времени < О распределение суммарных напряжений в грунте такое же, как и при равновесии в обычном упругом теле, но при = О сумма нормальных фиктивных напряжений равна нулю (объемных деформаций нет, соответствующая нагрузка воспринимается жидкостью). В последующем давление изменяется но Терцаги, согласно уравнению теило-проводности, гидростатически меняются и нормальные напряжения. Таким образом, по В. А. Флорину .. . касательные напряжения в скелете возникают сразу после приложения какой-либо нагрузки и в дальнейшем прп постоянном нарастании нормальных напряжений  [c.122]

Л,-где ось 2 направлена в глубину среды. Подстановка этих выражений в уравнения дви ке-ния и требования нетривиальности решения (т. е. коэффициенты А[, 5,- не равны тождественно нулю) позволяют выразить коэффициенты затухания по глубине в, г через волновое число и параметры среды. Дальнейшая подстановка решения в граничные условия (отсутствие возмущений напряжений в скелете среды и давленпя в жидкости) приводит к искомому дисперсионному уравнению. Это уравнение весьма сложно, поэтому Джонс ограничивается следующим замечанием исследуемое движение будет поверхностной волной, если коэффициенты г, 5 — действительные, положительные числа. Это возможно при нулевом коэффициенте вязкости, т. е. при ТО) 0. В связи со сложностью общего дисперсионного уравнения Джонс ограничивается далее рассмотрением этого случая, когда дисперсионное уравнение сводится к алгебраическому уравнению шестого порядка и показывает наличие по крайней мере одного корня, соответствующего двум возможным поверхностным волнам Релея. В сплошной однофазной упругой среде, как известно, такая поверхностная волна одна — наличие двух волн связано с существованием деформации двух типов, переупаковки и изменения плотности фаз. Частный случай волны Релея в отсутствии эффекта сжимаемости фаз рассматривался Э. А. Бондаревым [26].  [c.140]


Смотреть страницы где упоминается термин Уравнение деформации упругой жидкости : [c.204]    [c.303]    [c.36]    [c.365]    [c.469]    [c.469]    [c.41]    [c.146]    [c.382]    [c.62]    [c.290]    [c.33]    [c.209]   
Смотреть главы в:

Гидравлика и гидропровод Издание 3  -> Уравнение деформации упругой жидкости



ПОИСК



283 — Уравнения жидкости

Деформации Уравнения

Деформация упругая

Жидкость упругая

Уравнения Уравнения упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте