Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поведение вязко-упругих тел

Вторая краевая задача связана с изучением поведения вязко-упругого тела, когда граница Г подвержена воздействию напряжений, т. е. задаются нормальная и касательная составляющие тензора напряжений  [c.14]

ПОВЕДЕНИЕ ВЯЗКО-УПРУГИХ ТЕЛ ЮЗ  [c.103]

Поведение вязко-упругих тел  [c.103]

ПОВЕДЕНИЕ ВЯЗКО-УПРУГИХ ТЕЛ  [c.105]

ПОВЕДЕНИЕ ВЯЗКО-УПРУГИХ ТЕЛ Ю7  [c.107]

Следует еще раз подчеркнуть, что очень немногие тела хотя бы приближенно ведут себя подобно модели Максвелла или Фохта и что только с помощью спектра времен релаксации может быть достаточно точно определено динамическое поведение тела. Единственным доводом для использования простейших моделей с одним временем релаксации является то, что в противном случае математический анализ становится чрезвычайно запутанным. Однако когда механическое поведение вязко-упругого тела надо знать только в ограниченной области частот, упругость и вязкость ,  [c.115]


Поведение вязко-упругого тела можно объяснить на основании следующей механической модели, называемой моделью тела Фохта (рис. 19.8).  [c.552]

Рассмотренные модели вязко-упругих тел дают возможность рассмотреть лишь некоторые основные особенности поведения материалов при ползучести. Реальные процессы в вязко-упругих телах бывают значительно более сложными. Для их описания можно строить другие более сложные модели, включающие большое количество упругих и вязких элементов (см., например, рис. 22.30).  [c.525]

Уравнение (5) характеризует реологическое состояние среды, в которой при постоянной деформации напряжение релаксирует до нуля по экспоненциальному закону. Уравнение (6) описывает деформацию среды с последействием. В этой среде при мгновенном снятии напряжений деформация экспоненциально убывает до нуля. Уравнение (7) соответствует деформации сложной среды с релаксацией напряжения и последействием. Следует отметить, что в литературе деформацию упругого последействия часто называют эластической. Если она достигает очень высоких значений, ее общепринято именовать высокоэластической. Аналогично уравнениям (5)—(7) можно составить уравнение модели вязко-упругого тела с любым (конечным или бесконечным) набором времен релаксации и последействия. Естественным обобщением модельной теории вязко-упругой среды является интегральная теория вязко-упру-гости, в которой спектры времен релаксации и последействия могут быть как дискретными (тогда реологическое поведение тела можно описать соответствующей моделью), так и непрерывными. Изложение этой теории описано, например, в монографии Д. Бленда Теория линейной вязкоупругости (Издательство Мир , М. 1965).  [c.16]

Вязко-упругое тело, поведение которого описывается соотношением (2.16), с ядром (2.21) называют линейным стандартным телом или телом Кельвина. Модель этого тела, состоящая из  [c.28]

Нелинейность элементов упругости и течения в материале требует создания в испытуемом образце пространственной однородности напряжения и деформации. Это приобретает особое значение при больших деформациях или больших скоростях нарастания напряжений, когда упругость не подчиняется закону Гука, а текучесть — закону Ньютона. Такой случай поведения полимерного материала соответствует вязко-упругим телам, механические модели которых содержат нелинейные элементы.  [c.7]

Теория колебаний больцмановского тела, подчиняющегося уравнению (5.38), приводит к чрезвычайно сложной математической задаче, включающей решение интегро-дифференциального уравнения с частными производными. В. Вольтерра [150] в его теории функционалов рассматривал эту задачу, но результаты этой теории нашли пока очень небольшие применения к изучению динамического поведения вязко-упругих материалов.  [c.111]


Устойчивость линейных вязко-упругих систем. В работе А. Р. Ржаницына (1946) был рассмотрен вопрос об устойчивости сжатого стержня из вязко-упругого материала, поведение которого описывается моделью стандартного вязко-упругого тела  [c.145]

Некоторые свойства вязко-упругого тела. Тело, поведение которого описывается уравнением (84.3), может быть названо вязко-упругим. Действительно, при ц = 0 это уравнение переходит в закон Гука, при Е = оо из него следует  [c.182]

Нормальность и выпуклость являются геометрическими терминами, в которых формулируется кинематически возможное совместное поведение материала. Грубо говоря, в рамках кинематических ограничений количество энергии, накапливаемое в упругом материале или рассеиваемое в неупругом материале (независимо от того, пластический он или вязкий), должно быть максимальным. Для устойчивого поведения упругих тел это формулируется гораздо более точно при помощи принципов минимума дополнительной  [c.24]

Хрупкие термопластические материалы и реактопласты имеют коэффициент Пуассона порядка 0,3. Значение i термопластов зависит от температуры. Поведение растягивающихся высокополимерных тел под действием механических напряжений можно наблюдать на модели, представляющей параллельные или последовательные системы пружин и поршней (модель Фойгта и Максвелла, фиг. П. 8). Осадка пружин соответствует упругим деформациям вещества, а ход поршней — необратимым или протекающим с запаздыванием деформациям. Таким образом моделируется поведение очень вязких жидкостей.  [c.20]

Классическая теория упругости сохраняет свое почетное место в науке о поведении деформируемого твердого тела. Ее исходные определения являются общими для всех разделов этой науки, а методы постановки и решения задач служат для нее образцами. Успехи и завоевания теорий пластичности, ползучести, упруго-вязкой среды, разрушения твердых тел не заслоняют значения методов теории упругости для обоснования приемов расчета напряженного состояния в строительных сооружениях и машинах, составляюш,их суш,ественную часть наук о сопротивлении материалов и строительной механики.  [c.11]

Если функции (т) и у р (т) линейные, то область упругих деформаций, в которой это условие справедливо, является областью линейного вязко-упругого поведения материала. Установление этого факта чрезвычайно важно, так как линейная теория вязко-упругости хорошо разработана [23], что определяет широкие возможности для оценки поведения линейных тел в различных условиях.  [c.101]

В реологии широко применяют модельные представления упругое поведение характеризуют пружиной (тело Гука или Я-тело) вязкое — амортизатором, например, в виде трубки с вязким маслом, в которой свободно ходит поршень (ньютоновская вязкая жидкость или Л -тело) пластичное тело, движущееся с трением по горизонтальному столу (тело Сен-Венана или 5/-У-тело). Деформацию различных комбинаций этих и других моделей затем описывают с помощью системы соответствующих уравнений.  [c.132]

Значит, если время приложения силы мало по сравнению с т, материал ведет себя подобно упругому телу, если же это время велико по сравнению с т, поведение материала подобно поведению вязкой жидкости с вязкостью Твердое тело, подчиняющееся за-  [c.104]

В. Стойко-вязкость. Некоторым контрастом к вязко-упругому поведению является поведение композитного твердого тела другого типа, для которого следует предположить, что напряжения а и т слагаются из двух частей о и т, вызывающих упругие деформации, и о" и т", необходимых для того, чтобы преодолеть в теле внутреннее сопротивление вязкого характера, препятствующее любому изменению деформаций и пропорциональное скоростям изменения деформаций или у соответственно )  [c.208]

Это служит контрастом вязко-упругому поведению тела, что можно усмотреть, переписав соответствующее выражение (4.4) для вязко-упругости следующим образом  [c.209]

Суммируя сказанное, можно утверждать, что третий тип идеального композитного вязко-упругого чувствительного к восстановлению деформаций вещества (8 = е + е" - -е", а = а + а") обладает такими свойствами, при помощи которых можно вос произвести, по крайней мере качественно, некоторые фазы неупругого поведения реальных поликристаллических тел или органических материалов (пластмасс).  [c.218]


До сих пор мы обсуждали линеаризованные уравнения возмущенного движения для упругого тела. Аналогично могут быть составлены уравнения для тел, материал которых обладает неупругими свойствами. Так, уравнения для линейного вязко-упругого материала получаются из уравнений для упругого материала, если произвести замену упругих постоянных соответствующими вязко-упругими операторами. Однако в случае упруго-пластического материала возникают существенные трудности. Поведение упруго-пластического материала весьма чувствительно к малым изменениям пути деформирования, что проявляется, в частности, в необходимости различать сколь угодно малые нагружения и разгрузку. Уравнения деформирования упруго-пластических систем, вообще говоря, не допускают линеаризации. Линеаризация возможна лишь при некоторых дополнительных предположениях (например, при предположении, что всюду происходит нагружение). Предположения такого рода сужают класс рассматриваемых возмущенных движений поэтому результаты, полученные на их основе, имеют ограниченный или условный характер.  [c.333]

Впоследствии У. Фойгт при расчете радиальных герметизаторов рассматривал модель, приведенную на рис. 16, б,- Дифференциальное уравнение, описывающее поведение упруго-вязкой модели (тело Бюргерса) в динамике, т. е. при деформации кромки манжеты в радиальном направлении в соответствии с законом  [c.32]

Поведение материала при импульсивных нагрузках, как известно, зависит от времени релаксации (Т). Если время приложений силы мало по сравнению с Т, материал ведет себя подобно упругому телу, если же это время велико по сравнению с Т,—поведение материала подобно поведению вязкой жидкости.  [c.116]

Деформационные свойства вязкоупругих тел описываются феноменологическими теориями, наиболее разработанной среди которых является теория линейной вязкоупругости, описывающая вязкоупругое тело как комбинацию идеально упругой и идеально вязкой компонент. Поведение идеально упругой составляющей описывается в терминах классической теории упругости обобщенным законом Гука и характеризуется по крайней мере двумя упругими константами — модулем Юнга Е и коэффициентом Пуассона х. Другие константы — модуль упругости при сдвиге О и модуль объемного сжатия К — связаны с Е и ц следующими выражениями  [c.24]

В чем заключается отличие в поведении во времени упругого тела и вязкой жидкости  [c.445]

Поведение полимерных материалов при умеренных напряжениях, оторые обычно допускаются в конструкциях из этих материалов, как оказывается, вполне удовлетворительно описывается теорией линейной вязкоупругости, притом с ядрами довольно сложного вида (не такими, которые соответствуют простейшим реологическим моделям тела Максвелла или стандартного вязко-упругого тела). Предшествующие теоретические исследования дали в руки готовый аппарат для построения теории вязко-упругости полимеров, и в этой области за короткое время были достигнуты значительные успехи. Большой объем исследований был выполнен научными коллективами при участии А. А. Ильюшина,  [c.123]

Поведение материала, коюрое объединяет в себе свойства упругости и вязкости, называют вязкоупругим. Предельными противоположными случаями большого числа вязкоупругих сред являются упругое тело и вязкая жидкость.  [c.140]

Существует обширный класс веществ, которые при деформации проявляют как вязкостные, так и упругие свойства. Их принято именовать вязко-упругими. Описание свойств подобных тел в последнее время привлекает к себе много внимания. При составлении реологических уравнений состояния вязко-упругих сред широко используется феноменологический метод моделей. Принимают, что поведение той или иной среды описывается в первом приближении некоторой моделью, составленной из пружин и поршней. При этом деформация пружины в модели описывает упругую деформацию в среде, а движение поршкей в вязкой жидкости— необратимые деформации вязкого течения. На рис. 8 изображены модели простейших вязко-упругих сред а) максвелловское тело б) тело Кельвина-Фойгта в) тело Бургерса-Френкеля. Реологические уравнения состояния можно составить, рассматривая  [c.15]

В этом разделе изучается влияние свойств тонкого поверхностного слоя на характеристики контактного взаимодействия при качении упругих тел, разделённых жидким смазочным материалом. Давление, возникающее в слое жидкости при относительном движении поверхностей, и толщина плёнки смазки в этом случае зависят от геометрии контакта и вязких свойств жидкости (гидродинамическая смазка), а также от упругих свойств взаимодействующих тел (эластогидродинамическая смазка). Теории гидродинамической и эластогидродинамической смазки изложены в монографиях [22, 60, 81, 162, 185]. Эти теории, базирующиеся на ньютоновской модели жидкости, удовлетворительно предсказывают толщину плёнки смазки в зазоре между телами. Однако при высоких давлениях и низких скоростях относительного проскальзывания наблюдается различие в предсказываемых теорией величинах силы трения и диссипации с наблюдаемыми в экспериментах. Для получения более достоверных результатов рассматривались модели, учитывающие эффект изменения вязкости от температуры и неньютоновское поведение жидкости при высоких давлениях (см. [190, 230]).  [c.284]

Физический микромеханизм этого явления недостаточно изучен в количественном отношении. Имеются данные, главным образом качественного характера, что вязко-Рис. 138. упругое поведение материала связано с несовершенствами кристаллической решетки, с диффузией атомов и с течением межгранулярных прослоек. Не касаясь этой стороны дела, укажем, что вязко-упругое поведение материала может быть упрощенно охарактеризовано с помощью следующей механической модели (модель тела Фохта ).  [c.224]


Ее интерпретация требует привлечения представлений [58], изложенных в главах 2, 3. Они основываются на рассмотрении конденсированного состояния как системы, значительно удаленной от состояния равновесия. Благодаря этому удается единым образом представить упругое и пластическое поведение твердого тела, его течение и разрушение. Оказывается, что элементарные носители указанных явлений представляются автоло-кализованными решениями полевых уравнений вязко-упругой среды [96] (см. п. 1.2). Изложению картины вязкого разрушения, основывающейся на этих представлениях, посвящен п. 2.1.  [c.297]

Хилье [51] рассмотрел распространение продольных синусоидальных волн вдоль вязко-упругой нити и вывел соотношения для тела Максвелла, тела Фохта и тела, поведение которого подобно поведению моделей на фиг. 27. Для максвелловского тела зависимость между напряжением и деформацией (5.23) можно записать в следующей форме  [c.113]

Если сделать определенные предположения относительно формы колодца потенциальной энергии и природы молекулярных групп, которые в нем колеблются, то можно показать (Тобольский, Пауэл, Эринг [145], стр. 125), что теория приводит к механическому поведению тела, подобному тому, которое описывается моделями пружина— амортизатор, рассмотренными ранее в этой главе. В такой трактовке вопроса подчеркивается зависимость вязко-упругих свойств от температуры из этой зависимости могут быть выведены термодинамические соотношения. Главное неудобство в приложении теории к реальным телам в количественном отношении связано с тем, что природа потенциального колодца для тел является в значительной мере предметом догадки и что часто несколько различных процессов могут протекать одновременно. Тем не менее, это пока почти единственный серьезный подход к молекулярному объяснению наблюдаемых эффектов, и он дает надежную базу для развития в будущем.  [c.118]

Поведение материала, которое объединяет в себе оба эти свойства— и упругости, и вязкости,— называют вязкоупругим. Упругое тело и вязкая жидкость занимают крайние противоположные точки в широком спектре вязкоупругих сред. Хотя вязкоупругие материалы чувствительны к температуре, последующее изложение ограничивается условиями изотермии й температура входит в уравнения только как параметр.  [c.279]

Упругость и вязкость комбинируются в веществе простейшими способами. А. Введение. В упругом теле компоненты малых деформаций являются линейными функциями компонент напряжений. Поведение вещества называется в общем случае вязкам, если скорости необратимых перемещений точек относительно друг друга возрастают с ростом напряжений, вызывающих деформацию вещества. Таким образом, вязкое вещество деформируется при тем больших значениях скоростей деформации, чем больше напряжения, причем простейшим случаем служит идеально вязкое вещество, у которого компоненты скоростей необратимых деформаций возрастают пропорционально соответствуюияим компонентам напряжений. Вязкость твердых веществ становится заметной при повышении температуры. Одним из обычных примеров этого служит подвешенный вертикально прямой стеклянный стержень, нагруженный грузом при температуре, приближающейся к температуре размягчения стекла. При этом наблюдается непрерывное опускание груза, стержень же необратимо удлиняется с тем большей скоростью (пропорционально увеличивающейся с увеличением груза), чем больше груз. В этом параграфе вначале рассматривается несколько типов таких тел, которые можно назвать простейшими идеальными композитными телами, а именно тела, у которых свойства идеальной упругости и вязкости проявляются одновременно и в простейшем сочетании. Примеры такого рода рассматриваются также с целью лучшего уяснения более общих явлений, наблюдаемых в поведении твердых тел при повышенных температурах, как, например, медленной ползучести податливых металлов или поликристаллических твердых тел, находящихся под действием напряжений в течение продолжительного времени. Эти примеры рассмотрены далее при более точных предположениях.  [c.201]

Упруго-вязко-плаетичеекие тела. Несмотря на то, что упругопластическая модель во многих отношениях правильно отражает динамическое поведение металлов, для выполненных за два последние десятилетия работ по распространению нелинейных волн в твердых телах характерен критический подход к теории упруго-пластических волн, имеющий целью ее уточнение. Выявлены некоторые экспериментальные факты, не допускающие объяснения на основе модели упруго-пластического тела. Б первую очередь сюда относятся наблюдения над распространением догрузочных импульсов (волн) в предварительно напряженных стержнях, выведенных за пределы упругости. Теория распространения упругопластических волн предсказывает, что скорость распространения догру-зочного импульса по предварительно деформированному стержню определяется наклоном динамической диаграммы при данной деформации. Однако опыты (см., например, М. В. Малышев, 1961) показали, что в ме таллических стержнях передний фронт догрузочного импульса при любых предварительных деформациях распространяется со скоростью упругих  [c.311]

Особый интерес представляют задачи о движении штампов по вязко-упругим основаниям с учетом динамических эффектов, имеющих, при этом место. Такие смешанные граничные задачи выпадают из класса вязкоупругих задач, которые могут быть решены обращением соответствующих упругих решений. Когда скорость движения одного тела относительно другого достаточно велика, возникает необходимость в специальном исследовании того, нужно ли считаться с динамическим характером задачи, т. е. принимать во внимание инерционные силы. Подобные вопросы приходится рассматривать, например, при расчете подшипников качения. Контактные задачи, предполагающие наличие скольжения, в точной постановке также являются динамическими, поскольку предполагают движение одного тела относительно другого. Явление проскальзывания двух соприкасающихся поверхностей можно наблюдать во многих задачах механики. В последнее время в связи с широким применением полимеров как конструкционных материалов в связи с проблемой переработки их в изделия также возник особенный теоретический и практический интерес к вопросам вязкоупругого поведения сплошных сред с учетом динамических эффектов. Поэтому, в частности, представляет интерес рассмотрение задачи о штампе, перемещающемся с постоянной скоростью по границе вязкоупругой полуплоскости. Подобная задача для упругой области была решена Л. А. Галиным [И].  [c.404]

Рассмотрт другие частные модели сплошных сред модель линейного упругого тела и модель линейной вязкой жидкости. Построение этих моделей проводится параллельно, так как способы их введения, как мы увидим, формально аналогичны. По существу же эти две модели описывают два совершенно различных типа механического поведения реальных сред.  [c.165]


Смотреть страницы где упоминается термин Поведение вязко-упругих тел : [c.290]    [c.12]    [c.97]    [c.14]    [c.32]    [c.224]    [c.118]    [c.204]    [c.378]   
Смотреть главы в:

Волны напряжения в твердых телах  -> Поведение вязко-упругих тел



ПОИСК



Вязко-упругое поведение резины

Вязко-упругость

Математическое описание вязко-упругого поведения резины

Поведени

Полевая теория вязко-упругого поведения конденсированной среды



© 2025 Mash-xxl.info Реклама на сайте