Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения вязкой жидкости в напряжениях

Выполним аналогичные преобразования для проекций сил на направления осей ОУ и 01, получим систему дифференциальных уравнений движения вязкой жидкости в напряжениях  [c.91]

Дифференциальные уравнения движения вязкой жидкости в напряжениях. Выделим в потоке вязкой жидкости элементарный параллелепипед с ребрами dx. dy и dz. На параллелепипед действуют объемные и поверхностные силы. В общем случае поверхностные силы имеют не только нормальные, но и касательные составляющие. На рис. 15 показаны нормальные и касательные напряжения, действующие на гранях выделенного параллелепипеда. Индексация напряжений записывается по следующему принципу первый  [c.44]


Уравнение (123) называется дифференциальным уравнением движения вязкой жидкости в напряжениях. Если уравнение (123) спроектировать на оси координат, то при заданной плотности р три полученных дифференциальных уравнения будут связывать двенадцать неизвестных величин , у, ш и девять компонентов матрицы (5).  [c.319]

Подставив выражение для вязких напряжений (6.2) в уравнение движения (2.20), получим уравнение движения вязкой жидкости в форме Навье—Стокса  [c.140]

После этого уравнения движения сплошной среды в напряжениях для вязкой несжимаемой жидкости вместе с уравнением неразрывности приводят к следующей системе уравнений  [c.558]

Пользуясь формулами (6), (17), (19) и (23), можно в дифференциальных уравнениях (14), с учетом т] = О, т. е. о = —р, заменить напряжения скоростями деформаций. При этом мы получим так называемые дифференциальные уравнения движения вязкой жидкости Навье — Стокса.  [c.68]

Л. С. Предводителев учитывает явления, связанные с химическими превращениями вещества, в движущейся среде путем модификации самих уравнений аэродинамики. Вспомним, что уравнения движения вязкой жидкости можно получить из уравнений Эйлера путем введения в уравнение тензора вязких напряжений для учета рассеяния энергии видимого движения среды. Но аналогии с этим способом вывода уравнения в случае рассеяния энергии химическим процессом вводится тензор химических напряжений. При этом необходимо иметь в виду, что тепло, получаемое за счет химических превращений, может быть положительным и отрицательным [Л. 29—31].  [c.16]

Максвелл в действительности не очень интересовался релаксацией упругих напряжений в твердых телах. Следуя ранней попытке Навье вывести уравнения движения вязкой жидкости из уравнений теории упругости, предполагая одновременную релаксацию, он постулировал свой закон (IX. 7), как исходную предпосылку для теории вязкости. В соответствии с этим он продолжает  [c.153]

Уравнения гидродинамики вязкой жидкости. В большинстве случаев процессы в тонкой пленке зазора уплотнения можно рассматривать в режиме ламинарного движения вязкой несжимаемой жидкости. Мысленно выделив в объеме жидкости некоторый элемент со сторонами 8х, 5у, 6г (рис. 1.18), заменим действие на него остальной части жидкости реакциями связи — давлением р и касательным напряжением х. Кроме того, на рассматриваемый элемент могут действовать гравитационная, центробежная и другие массовые силы, равнодействующая которых J, отнесенная к  [c.31]


Завершающим этапом построения гидродинамики вязкой жидкости стала работа Дж. Г. Стокса 1845 г. Стокс дал, независимо от Пуассона и Сен-Венана, строгий вывод уравнений движения вязкой жидкости на основе линейной зависимости шести компонент напряжений от шести компонент скоростей деформации жидкой частицы. Жидкость Стокс определял как среду, в точках которой разность давления на произвольно ориентированной площадке и среднего давления, которое имело бы место при относительном равновесии, определяется лишь скоростью относительной деформации частицы. В результате Стокс пришел к уравнениям, содержащим, вообще говоря, два коэффициента вязкости. Однако на основании ряда соображений (на которых он впоследствии не настаивал) Стокс высказал предположение, эквивалентное требованию равенства нулю второго коэффициента вязкости, и выписал уравнения в виде  [c.68]

Уравнения движения вязкой жидкости можно получить, рассматривая, как в б, прямоугольный параллелепипед дх ду дг, центр которого находится в точке (х, у, 2). Находя, например, результирующую в направлении оси х, будем иметь, что разность нормальных напряжений, действующих на площадки уг, равна  [c.721]

Дифференциальные уравнения движения вязкой жидкости получили своё окончательное обоснование и признание только после работы Стокса ), в которой движение частицы раскладывается на поступательное, вращательное, равномерное расширение или сжатие и движение, обусловленное деформациями сдвига. Дополнительные к давлению напряжения ставятся в зависимость только от движений, обусловленных деформациями частицы. Затем используются положения о главных осях напряжений и деформаций и в качестве наиболее вероятной принимается гипотеза о пропорциональности дополнительных  [c.20]

Дифференциальные уравнения движения вязкой жидкости. Напряжения поверхностных сил, действующих на гранях выделенного параллелепипеда, связаны со скоростями его деформации. Вследствие того, что составляющие скорости неодинаковы, в угловых точках параллелепипеда происходит скашивание ребер (рис. 16). Угловые деформации для рассматриваемой грани для  [c.45]

Обращаясь к уравнениям движения сплошных сред в напряжениях (3.3.5) и используя равенства (9.1.4), запишем уравнение движения вязкой изотропной жидкости в векторной форме  [c.231]

Мы, однако, ограничимся выводом основных уравнений движения вязкой жидкости из нескольких простых предпосылок. Для этого нам нужно будет вернуться ещё раз к разобранному уже в главе I части первой этой книги вопросу о деформации жидкой частицы, рассмотреть затем подробно вопрос о тензоре напряжений и установить, наконец, связь между напряжениями и деформациями.  [c.371]

Дифференциальные уравнения движения вязкой жидкости могут быть получены подобно уравнениям Эйлера. Различие будет лишь в том, что в случае вязкой жидкости на грани параллелепипеда будут действовать не только нормальные напряжения Ру, р , но и касательные, так как поверхностные силы в вязкой жидкости не  [c.202]

В теории упругости уравнение движения в форме напряжений называется уравнением Навье (1825 г.), где, возможно, более известен его частный случай, получивший название уравнение равновесия. В механике жидкости также имеется аналогичное уравнение движения в напряжениях [20, 31]. В данной работе проводится сравнение этих уравнений в своих областях механики и обосновывается другой путь вывода уравнений движения вязкой жидкости, который не отличается от вывода и использования системы уравнений Навье.  [c.4]

Уравнения движения вязкой жидкости можно получить из уравнений движения в напряжениях (2.16), выполнив некоторые преобразования. Рассмотрим лишь одну проекцию этих уравнений  [c.74]

Общее уравнение энергии вязкой жидкости. Рассмотрим теперь в декартовых координатах пространственную задачу нестационарного движения вязкой жидкости с источниками. Для определения работы, которую совершает над контрольным объемом единица массы жидкости, пересекающая контрольную поверхность, воспользуемся полными уравнениями для нормальных напряжений (3-4) — (3-6). Используем также полные уравнения для касательных напряжений (3-1) — (3-3). Это приводит к значительному алгебраическому усложнению задачи, но принципиально ход вывода полного уравнения энер-54  [c.54]


Опыт показывает, что в потоках вязких жидкостей или газов около поверхности твердого тела или у границы двух потоков жидкости, движущихся с разными скоростями, действие сил вязкости в разных областях течения проявляется неодинаково. Оно проявляется заметно там, где возникают большие поперечные градиенты скорости и, как следствие, касательные напряжения велики. По мере увеличения расстояния от стенки действие сил вязкости ослабевает и становится исчезающе малым на сравнительно небольшом удалении, В обычных условиях течения скорость частиц жидкости относительно обтекаемой поверхности и на самой поверхности равна нулю с увеличением расстояния от стенки она быстро увеличивается, приближаясь к скорости внешнего потока О), где поперечные градиенты скорости практически равны нулю, а касательные напряжения, возникающие вследствие трения, пренебрежимо малы. Течение в области, удаленной от поверхности, можно считать совпадающим с потенциальным течением идеальной жидкости и применять к нему закономерности теории идеальной жидкости. Эту область называют потенциальным или внешним потоком. Тонкий слой жидкости, прилегающий к поверхности обтекаемого тела и заторможенный вследствие трения, называют динамическим пограничным слоем. В пределах пограничного слоя касательное напряжение от трения очень велико даже при малой вязкости жидкости, поскольку очень велик градиент скорости в направлении, перпендикулярном поверхности тела. Во внешнем потоке инерционные силы преобладают над силами вязкости, поэтому уравнения Навье—Стокса переходят в уравнения движения идеальной жидкости.  [c.18]

Заметим, что ГИУ (1.4) можно получить сразу из ГИУ статической теории упругости (см. уравнение (10) на стр. 53), если использовать известную аналогию между несжимаемой упругой средой (коэффициент Пуассона v = 0,5) и несжимаемой вязкой жидкостью в стоксовском приближении. Согласно этой аналогии, любое решение уравнений теории упругости при V = 0,5 и произвольном модуле сдвига х может быть интерпретировано как медленное движение вязкой жидкости с вязкостью fx. Поле скоростей в жидкости совпадает с полем смещений точек упругого тела, а распределение давлений-— с гидростатической компонентой тензора напряжений ). Поэтому ГИУ (1.4) получается из (10) (см. стр. 53) предельным переходом при v = 0,5.  [c.185]

Все эти экспериментальные исследования, несомненно, послужили мощным толчком к тому, чтобы предпринимать попытки к теоретическим исследованиям по вопросу о составлении дифференциальных уравнений движения жидкости с учётом не только давления", но и внутреннего трения. К этому времени стали открываться возможности для теоретических исследований такого рода в связи с развитием механика упруго деформируемого тела. Накопление исследований и решений конкретных задач по теории изгиба брусьев, по теории кручения стержней и по теории колебаний стержней и пластинок на основе использования закона Гука о пропорциональности напряжений деформациям создало все предпосылки не только к тому, чтобы установить общие уравнения равновесия и колебаний упругих тел, но и к тому, чтобы закон Гука в несколько изменённой форме распространить на жидкость и на основе этого создать дифференциальные уравнения движения жидкости с учётом внутреннего трения. Этим обстоятельством и объясняется тот факт, что создатели математической теории упругости—Навье, Пуассон, Коши, Сен-Венан и Стокс оказались одновременно и создателями математической теории движения вязкой жидкости.  [c.14]

Используя эти соотношения для напряжений, Пуассон, далее, получает дифференциальные уравнения движения жидкости, по внешней форме совпадающие с уравнениями Навье. Различие состоит только в том, чта давление заменено в уравнениях Пуассона через некоторую функцию, содержащую, кроме давления, производные по времени от давления и плотности. Чтобы замкнуть систему уравнений, Пуассон присоединяет к ней уравнение неразрывности в общей форме с учётом изменения плотности и уравнение физического состояния, связывающего плотность, давление и температуру, К этим уравнениям присоединяется уравнение теплопроводности в своей простейшей форме, т. е. без учёта конвекции. Таким образом, в мемуаре Пуассона впервые были введены соотношения, выражающие линейную зависимость тензора дополнительных напряжений жидкости при её движении от тензора скоростей деформаций частицы, и установлены дифференциальные уравнения движения вязкой сжимаемой жидкости.  [c.18]

В 3 были установлены дифференциальные уравнения движения жидкости в напряжениях. Чтобы написать эти уравнения через проекции вектора скорости, необходимо воспользоваться соотношениями, представляющими компоненты тензора напряжения через компоненты тензора скоростей деформации. Такое преобразование мы проведём лишь для случая вязкой жидкости, для которой принимается обобщённая гипотеза Ньютона, связывающая компоненты напряжения с компонентами скоростей деформаций линейными соотношениями (11.1) и (11.16) главы I.  [c.90]

Уравнения движения вязкой несжимаемой жидкости 90 --в напряжениях 78  [c.518]


Чтобы получить уравнения, описывающие движение вязких жидкостей, необходимо к уравнениям движения в напряжениях присоединить дополнительные выражения, связывающие напряжения с кинематическими характеристиками движения.  [c.230]

Разработан метод исследования динамики твердых тел (частиц), расположенных у границы сжимаемой вязкой жидкости, при прохождении акустической волны. Действие жидкости на тело (частицу) определяется средними по времени силами, представляющими постоянные во времени слагаемые гидродинамических сил. В связи с этим используется разработанный ранее метод вычисления давления в сжимаемой вязкой жидкости с сохранением слагаемых, квадратичных по параметрам волнового поля. Метод основан на использовании упрощенной (применительно к волновым движениям жидкости) системы исходных нелинейных уравнений гидромеханики. Оказалось возможным при вычислении напряжений в жидкости сохранить величины второго порядка, не решая систему нелинейных уравнений. Напряжения удается выразить через величины, определяемые с помощью линеаризованных уравнений сжимаемой вязкой жидкости. Для этого используются представления решений линеаризованных уравнений через скалярный и векторный потенциалы. На основе этого метода сформулирована задача для цилиндра у плоской стенки при падении волны перпендикулярно стенке, и рассмотрен конкретный пример.  [c.342]

Наряду с изученными сейчас продольными волнами, в вязкой жидкости могут распространяться поперечные возмущения (поскольку сдвиговые напряжения в такой среде отличны от нуля). В этом можно убедиться, показав, что уравнения движения вязкой  [c.539]

Навье, Пуассон, Стокс, обобщив формулу Ньютона о связи касательных напряжений с полем скоростей, вывели фундаментальные уравнения движения вязкой жидкости. В результате интегрирования этих уравнений Стокс, И. С. Громеко, Н. П. Петров получиоти теоретические ре-  [c.10]

Д.Стокс [228], заложив основы феноменологического подхода к гидродинамике и теории упругости, предложил общее определение понятия жидкости разность между давлением, действун )щим на проходящую в заданном направлениц плоскость через произвольную точку Р движущейся жидкости и одинаковым для всех направлений давлением в этой же точке, когда жидкость в ее окрестности находится в состоянии относительного равновесия, зависит от относительного движения жидкости в непосредственной близости от Р, причем относительное движение, обусловленное любым вращением, может быть исключено без изменения упомянутой разницы давления [228]. Этому определению Д.Стокс придал и четкую математическую форму, придя в итоге к уравнениям движения вязкой жидкости. В настоящее время эти уравнения называются уравнениями Навье — Стокса. История развития представлений о характере и свойствах жидкости в XIX и начале XX в. представлена в работе [ 206 ]. Экспериментально установлено, что коэффициент пропорциональности между касательными напряжениями в точке и локальным градиентом скорости зависит от температуры жидкости и давления в точке и называется коэффициентом вязкости ц. Физический смысл этого параметра, связанный с молекулярным переносом количества движения в жидкости, раскрыт в [8, 65, 66]. Наряду с коэффициентом вязкости ц часто используется кинематический коэффициент вязкости  [c.9]

К спорным вопросам методики изложения, принятой в настоящем курсе, мы относим, например, предлагаемый авторами способ вывода общего уравнения энергии на основе первого начала термодинамики ( 4-2). Нам представляется, что традиционный способ использования первого начала термодинамики при выводе уравнения энергии, принятый в лучших отечественных курсах газовой динамики, является более корректным и дает возможность яснее представить сущность делаемых при этом термодинамических допущений. Недостаточно ясна с математической точки зрения трактовка понятий материального метода и метода контрольного объема в 3-6. Оба метода опираются на эйлерово представление о движении жидкой среды. Их противопоставление, как нам кажется, носит иногда искусственный характер. При выводе общих уравнений движения вязкой жидкости — уравнений Навье — Стокса — авторы, видимо, следуя Г. Шлихтингу , опираются на аналогию с напряженным состоянием упругого тела. При этом предполагается знание читателем некоторых вопросов теории упругости. Вряд ли такой способ вывода фундаментальных гидродинамических уравнений будет удобен для любого читателя. Еще одним спорным в методическом отношении местом является то, что изложение теории турбулентного пограничного слоя опережает изложение представлений о турбулентном течении в трубах. Между тем, как известно, теория пограничного слоя использует некоторые зависимости, устанавливаемые при изучении течений в трубах. Поэтому, может быть, естественнее начинать изложение вопроса  [c.7]

В основу вывода уравнений движения вязкой жидкости Пуассон положил своеобразный анализ деформации частиц среды за бесконечно малые промежутки времени, представляя каждую элементарную деформацию состоящей из двух процессов — упругой деформации согласно уравнениям теории упругости и последующего перераспределения (выравнивания) давлений в жидкости. Применение этих рассуждений привело Пуассона к прспорцио-нальности касательных напряжений скоростям деформации частиц. Однако в результате он получил уравнения движения, содержащие формально не две, а три физические характеристики жидкости (помимо плотности). Причиной этого было отсутствие достаточно строгого определения равновесного давления в потоке вязкой жидкости. Впрочем для малосжимаемой капельной ншдкости и адиабатического движения газа Пуассон свел число независимых физических характеристик жидкости к двум, в результате чего его уравнения движения приняли форму, близкую к точным уравнениям движения вязкой жидкости.  [c.67]

Тензор вязких напряжений. Для того чтобы написать уравнение движения вязкой жидкости, достаточно дополнить уравнение (VIII.1.4) силами вязкого трения и представить его в виде  [c.373]

Теория движения вязкой жидкости в форме, весьма близкой к современной, была опубликована в 1845 г. Стоксом (1819—1903), который, выделив из общего перемещения элемента жидкости деформационную часть, указал простую линейную зависимость возникающих в жидкости напряжений от скоростей деформаций, г. е. дал обобш,е-ние ранее уже упомянутого закона Ньютона. До Стокса, основываяс1. на некоторых специальных молекулярных гипотезах относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1826 г. Навье (1785—1836), в 1831 г. Пуассит (1781 —1846) и в 1843 г. Сеп-Венан (1797—1886).  [c.27]

О ТОМ, что главные напряжения в каждой точке улругого тела пропорциональны соответственным главным удлинениям. Но наряду с упругим телом Коши рассматривал и неупругое тело и жидкость. В своей основной работе ), сообщение по которой было сделано ещё в 1822 г., в 3 Коши рассматривает движение внутри неупругой среды и вместо проекций смещений вводит проекции вектора скорости смещения и свою основную гипотезу формулирует так главные напряжения в каждой точке пропорциональны мгновенным главным удлинениям или сжатиям. На основании этой гипотезы Коши получает дифференциальные уравнения, отличающиеся от современных уравнений движения вязкой жидкости только отсутствием слагаемого с давлением. Затем он видоизменяет свою гипотезу, полагая напряжение состоящим из двух слагаемых, из которых первое считается пропорциональным мгновенным сжатиям или расширениям, а второе считается зависящим только от положения точки. Далее, второе слагаемое принимается пропорциональным скорости объёмного расширения. Вследствие этого получаются дифференциальные уравнения, сходные с уравненрмми движения вязкой сжимаемой жидкости. Таким образом, Кощи, создавая основные понятия теории упругости, вместе с этим установил и некоторые основные понятия теории движения вязкой жидкости.  [c.19]


В статье, опубликованной в 1843 г., Сен-Венан ссылается на цитированные выше работы Навье, Пуассона и Коши и показывает возможность вывода уравнений движения вязкой жидкости с помощью видоизменения положений теории упругости о пропорциональности касательных напряжений деформациям сдвига без применения гипотез о притяжении и отталкивании отдельных частиц. Он вводит в рассмотрение направления главных скоростей скошения и главных тангенциальных напряжений, принимает гипотезу о совпадении этих направлений при движении жидкости и в конце концов получает два вида соотношений 1) соотношения пропорциональности разностей нормальных напряжений разностям соответственных скоростей удлинений и про-цррциональности касательных напряжений соответственным скоростям сдвига с общим коэффициентом пропорциональности, представляющим собой коэффициент вязкости жидкости, и 2) соотношение, связывающее линейной неоднородной зависимостью среднее арифметическое от нормальных напряжений со скоростью объёмного расширения. Из этих соотношений Сен-Венан получает соотношения Пуассона и Коши для отдельных компонент напряжения. В другой статье, в том же томе Докладов Парижской Академии наук (стр. 1108—1115) Сен-Венан применяет уравнения движения вязкой жидкости к случаю течения  [c.19]

В монофафии выполнен сравнительный анализ уравнений движения жидкости и твердого тела в напряжениях. В результате сравнения показано, что возможно получение уравнений движения вязкой жидкости с произвольным реологическим уравнением. С позиций метода проанализирована система Навье-Стокса и отмечено существование некоторых противоречий, затрудняющих получение общего решения. Приведена иерархия уравнений движения для вязкой, невязкой и идеальной жидкости. Рассмотрено использование данного метода для расчета некоторых известных и новых частных задач. Указаны пути замыкания систем дифференциальных уравнений движения.  [c.2]

Основываясь на тезисе о сушествовании корректного математического описания для процесса движения материальной среды в любой области классической механики, предложен другой путь вывода уравнений движения вязкой жидкости, который повторяет процесс вывода, характерный для системы Навье, из теории упругости. В основе этого вывода лежит уравнение движения жидкости в напряжениях. Этот путь позволяет избежать ряда несоответствий, отмеченных в главе 1, и отказаться от использования при выводе системы уравнений Навье-Стокса понятия скорости угловой деформации частицы.  [c.7]

Построен класс аналитических решений гюлньгх уравнений движения несжимаемой жидкости с учетом релаксационных явлений для вязких напряжений и теплового потока. Проанализированы условия движения, при которых диссипативная функция отрицательна. Массовая сила, ортогональная направлению движения сипьного гидродинамического разрыва, оказывает существенное воздействие на диссипацию энергии в жидкости Максвелла-Олдройда.  [c.131]

Подобно Росси, Файлон и Джессоп пробовали согласовать показательные кривые с их кривыми времени растяжения и времени оптического отставания, исходя из предварительной теории, согласно которой напряжение состоит из двух частей упругой и вязкой. Подобное смешанное напряжение возникло бы, если бы мы предположили, что материал состоит из смеси упругого твердого тела и вязкой жидкости, причем первое образует, так сказать, каркас, промежутки которого плотно заполнены вторым. Делая дальнейшее предположение, что гидростатическое давление" в уравнении Стокса для движения вязкой жидкости должно быть пропорциональным приложенному растяжению Т и равным 7Г, где 7 есть некоторая постоянная величина, они пришли к нижеследующим уравнениям для деформации s и относительного отставания г на единицу толщины  [c.231]

Подставив, значения напряжений по (5.3) и (5.4) в (5.5) и произведя необходимые преобразования, получим уравнения движения вязкой несжимаемой (р = onst) жидкости в виде  [c.95]

Отметим, что при формальном введении величин Р . ,. . . вязкость (А никакой роли не играет уравнения для средних элементов турбулентного движения идеальной жидкости отличаются от построенных нами уравнений для вязкой жидкости отсутствием членов члены же, дающие добавочные напряжения, имеют в обоих случа1ях одинаковый вид.  [c.694]

В важном частном случае р = onst и Q = О (второе несущественно) уравнения (6.6) и (6.7) становятся линейными и переходят в хорошо известные уравнения математической физики, описывающие движение электрического тока через проводящие поверхности произвольного вида (Н. А. Умов, 1875), течение несжимаемой жидкости в слое переменной толщины и ламинарную фильтрацию в неоднородных слоях (О. В. Голубева, 1950, 1953 П. Я. Полубаринова-Кочина, 1953), движение газй в плоскости годографа скорости (Л. С. Лейбензон, 1935), течение вязкой жидкости в подшипнике, напряженное состояние анизотропных валов и неоднородных пластинок. Математическая теория этих уравнений существенно развита в работах И. Н. Векуа, Л. Берса и А. Вайнштейна, М. А. Лаврентьева и Б. В. Шабата, С. Бергмана, Г. Н. ПоЛожего. Эффективные решения краевых задач для уравнений (6.6) и (6.7) представляются через аналитические (гармонические) функции и фундаментальные  [c.149]


Смотреть страницы где упоминается термин Уравнения движения вязкой жидкости в напряжениях : [c.21]    [c.382]    [c.260]    [c.486]    [c.524]    [c.232]   
Смотреть главы в:

Гидравлика  -> Уравнения движения вязкой жидкости в напряжениях



ПОИСК



283 — Уравнения жидкости

ВЯЗКАЯ ЖИДКОСТЬ Тензор напряжений и уравнения движения

Вязкая жидкость в движении

Движение вязкой жидкости

Жидкости вязкие — Уравнения движения

Жидкость вязкая

Напряжение вязкое

Напряжения Уравнения

Напряжения в вязких жидкостях

Напряжения в вязкой жидкости

Напряжения. Уравнения движения

Уравнения движения вязкой жидкости

Уравнения движения вязкой несжимаемой жидкости в напряжениях

Уравнения движения жидкости

Уравнения движения жидкости в напряжениях

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте