Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения движения вязкой жидкости

Основные уравнения движения вязкой жидкости  [c.193]

А. ОСНОВНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКОЙ ЖИДКОСТИ  [c.369]

Мы, однако, ограничимся выводом основных уравнений движения вязкой жидкости из нескольких простых предпосылок. Для этого нам нужно будет вернуться ещё раз к разобранному уже в главе I части первой этой книги вопросу о деформации жидкой частицы, рассмотреть затем подробно вопрос о тензоре напряжений и установить, наконец, связь между напряжениями и деформациями.  [c.371]


Описание движения среды в пограничном слое представляет собой более простую задачу по сравнению с точным решением основных уравнений движения вязкой и теплопроводящей среды это собственно и объясняет целесообразность введения понятия пограничного слоя. Из анализа движения в пограничном слое можно получить ряд зависимостей (со степенью приближения, характерной для пограничного слоя) для сопротивления движению со стороны твердых стенок, теплообмена между жидкостью и стенками и т. п.  [c.263]

Граничные и временные краевые условия позволяют выделить конкретный изучаемый процесс из общего класса явлений, описываемых совокупностью уравнения распространения тепла в движущейся среде, уравнениями движения вязкой жидкости и сплошности. Основным пространственным краевым условием для движущейся жидкости является характеристика скорости течения вблизи твердой поверхности. Из условия прилипания граничного слоя жидкости к поверхности стенки касательная составляющая вектора относительности скорости на стенке равна нулю. Для непроницаемой стенки в случае отсутствия какого-либо физико-химического процесса, сопровождающегося поглощением или выделением жидкости, нормальная составляющая скорости относительного течения также отсутствуют. Для входа и выхода жидкости из зазора обычно задают распределения скоростей и давления. Условия теплообмена различаются следующими краевыми условиями условием первого рода — задается распределение температуры на поверхностях в функции координат и времени второго рода — характеризуют распределение теплового потока на границе в функции координат и времени третьего рода — выражают зависимость температуры твердой стенки от температуры окружающей среды через коэффициенты теплоотдачи = ср+<7/ i = ср-(аст/а)(аг/аи)ет или (Эг/Эи)сх = -(Х/Аст) X X ( ст - ср). где Гст - температура стенки t p - температура среды q — плотность теплового потока а — коэффициент теплоотдачи. Временные краевые условия выражаются заданным распределением температур в характерный момент времени.  [c.164]

Обобщим прежде всего на случай турбулентного пограничного слоя основное интегральное соотношение (91) 87 предыдущей главы. Для этого заметим, что уравнения турбулентного пограничного слоя могут быть составлены из уравнений Рейнольдса (11) совершенно аналогично тому, как уравнения ламинарного пограничного слоя были составлены из уравнений движения вязкой жидкости. Будем иметь аналогично (89) 87  [c.621]


Основные приближенные уравнения движения вязкой жидкости рассматриваются в последних параграфах настоящей главы.  [c.234]

Одномерное течение между двумя параллельными плоскими стенками. В предыдущем разделе мы вывели основные уравнения гидромеханики вязкой жидкости в различных формах и установили ряд свойств, присущих либо всем движениям вязкой  [c.420]

Закончив на этом описание основных физических явлений, возникающих при течениях с очень малой вязкостью, и изложив тем самым в самых кратких чертах теорию пограничного слоя, мы перейдем в следующих главах к построению рациональной теории этих явлений на основе уравнений движения вязкой жидкости. В настоящей части книги (в главе III) мы составим общие уравнения движения Навье — Стокса, а во второй части сначала выведем из уравнений Навье — Стокса путем упрощений, вытекающих из предположения о малой величине вязкости, уравнения Прандтля для пограничного слоя, а затем перейдем к интегрированию этих уравнений для ламинарного пограничного слоя. Далее, в третьей части книги, мы рассмотрим проблему возникновения турбулентности (переход от ламинарного течения к турбулентному) с точки зрений теории устойчивости ламинарного течения. Наконец, в четвертой части книги мы изложим теорию пограничного слоя для вполне развившегося турбулентного течения. Теорию ламинарного пограничного слоя можно построить чисто дедуктивным путем, исходя из дифференциальных уравнений Навье — Стокса для движения вязкой жидкости. Для теории турбулентного пограничного слоя такое дедуктивное построение до сегодняшнего дня невозможно, так как механизм турбулентного течения вследствие его большой сложности недоступен чисто теоретическому исследованию. В связи с этим при изучении турбулентных течений приходится в широкой мере опираться на экспериментальные результаты, и поэтому теория турбулентного пограничного слоя является, вообще говоря, полуэмпирической.  [c.53]

Кулон предполагал, что при малых скоростях второй член играет решающую роль, а при больших скоростях — наоборот, им можно пренебречь. Кулон проделал большое количество опытов по изучению крутильных колебаний дисков в жидкости. Он установил отличие трения в жидкости от трения твердых тел, а также указал метод для определения той величины, которую Стокс, Максвелл, Мейер и др. называли внутренним трением. Опыты Кулона дали возможность Стоксу обосновать основные дифференциальные уравнения движения вязкой жидкости (1850 г.).  [c.8]

Основные критерии подобия можно установить различными путями. Ниже критерии подобия будут получены исходя из структуры основных дифференциальных уравнений движения вязкой жидкости.  [c.215]

Перейдем теперь к решению задачи о ламинарном, установившемся течении жидкости в круглой трубе, используя для этой цели основные уравнения движения вязкой несжимаемой жидкости (9.11).  [c.221]

Вязкость и теплопроводность проявляются только при наличии больших градиентов гидродинамических величин, которые имеют место, например, в пограничном слое при обтекании тел или внутри фронта ударной волны. В этой книге вязкость и теплопроводность нас будут интересовать в основном с точки зрения их влияния на внутреннюю структуру фронта ударных волн в газах. При изучении этой структуры течение можно считать зависящим от одной координаты X (плоским), так как толщина фронта ударной волны всегда намного меньше радиуса кривизны его поверхности. Поэтому мы не будем останавливаться на выводе общего уравнения движения вязкой жидкости (газа), которьи можно найти, например, в книге Л. Д. Ландау и Е. М. Лифшица [1], и поясним только, как можно получить уравнения для одномерного, плоского случая.  [c.66]

В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]


Так, в курсах теоретической гидродинамики и теоретической аэродинамики рассматриваются в основном течения невязкой жидкости круг задач о движении вязкой жидкости ограничен в той мере, в какой возрастают математические затруднения при решении соответствующих дифференциальных уравнений.  [c.8]

Как уже указывалось в 8 главы II, основное затруднение в решении дифференциальных уравнений движения вязкой несжимаемой жидкости для конкретных задач заключается в наличии в левых частях этих уравнений квадратичных членов инерции. Эти квадратичные члены инерции тождественно обращались в нуль, как это мы видели в первых параграфах предшествующей главы, лишь только тогда, когда жидкость считалась несжимаемой, а траектории частиц представляли собой либо параллельные прямые, либо концентрические окружности. Последнее обстоятельство может служить основанием к заключению о том, что для движений вязкой несжимаемой жидкости, для которых траектории частиц будут мало отличаться либо от параллельных прямых, либо от концентрических окружностей, квадратичные члены инерции будут малы и ими с некоторым приближением можно пренебречь. К такому же допущению можно подойти и с другой точки зрения.  [c.155]

Уравнения (1-25) являются основными динамически.ми уравнениями движения вязкой сжимаемой жидкости.  [c.16]

Мы видим далее, что безвихревые движения не дают решений задач гидромеханики вязкой жидкости не потому, что они не удовлетворяют основным уравнениям движения, а потому, что они не выполняют пограничных условий. А это означает, что завихренность Движений вязкой жидкости обусловливается наличием граничных условий, т. е. существованием прилипания жидкости к стенкам.  [c.399]

Обобщение уравнений Гельмгольца. В главе V части первой при рассмотрении вихревых движений в идеальной жидкости были выведены уравнения Гельмгольца. Смысл этих уравнений заключается в том, что они дают возможность количественного учёта изменений, происходящих с вихрями. Выше было отмечено, что громадное большинство движений вязкой жидкости является движениями вихревыми. Понятно поэтому то большое значение, которое должны иметь в случае вязкой жидкости уравнения, аналогичные уравнениям Гельмгольца. К выводу этих уравнений, протекающему совершенно аналогично случаю идеальной жидкости, мы теперь и приступим, причём мы предположим для определённости, что имеем дело с вязкой несжимаемой жидкостью, находящейся под действием массовых сил, имеющих потенциал. Тогда основные уравнения гидромеханики даются формулами (5.4), первая из которых имеет вид  [c.403]

Мы будем разбирать, следуя в основном Гамелю ), только плоскую задачу, т. е. будем изучать движение вязкой жидкости между двумя плоскими стенками, наклонёнными друг к другу под углом а. Естественно предположить, что движение будет чисто радиальным (рис. 160). В соответствии с этим возьмём уравнения гидромеханики в цилиндрических координатах (5.14) и поставим себе задачей найти точное рещение этих уравнений следующего вида  [c.460]

Так именно и поступил Стокс 1), впервые решивший в 1851 г. задачу о движении сферы в вязкой жидкости. Отбрасывая в основных уравнениях движения (5.1) инерционные члены и полагая, что внешние силы отсутствуют, мы получим систему уравнений  [c.504]

Проблема движения вязкой жидкости вблизи плохо обтекаемого тела представляет одну из наиболее сложных и до сих пор нерешенных проблем нелинейной механики жидкости. Роль конвективных членов, представляющих нелинейность в уравнениях Навье — Стокса, в создании зон замкнутых обратных токов, в явлении неустойчивости этих зон, начиная с некоторого критического рейнольдсова числа обтекания тела, отрыва их от тела и схода в область следа будет, вероятно, еще долго привлекать внимание исследователей. Велико прикладное значение этой проблемы. Такие важные технические задачи, как автоколебания цилиндрических тел в равномерных однородных потоках жидкостей и газов, звучание струн в потоках (эоловы тоны), использование обратных токов в следе за телом для стабилизации пламени в камерах горения, и ряд других близких по своей гидродинамической сущности проблем упираются в необходимость изучения динамических явлений в кормовой области плохо обтекаемых тел. Основная проблема сопротивления движению тел плохо обтекаемой формы в жидкостях и газах при малых и средних значениях рейнольдсовых чисел также остается до сих пор нерешенной.  [c.509]

Уравнения (9.10) или (9.11) являются основными дифференциальными уравнениями движения вязкой несжимаемой жидкости, именуемыми, обычно, уравнениями Навье—Стокса. Присоединяя к этим уравнениям уравнение неразрывности  [c.210]

Напишем основные дифференциальные уравнения движения вязкой несжимаемой жидкости  [c.228]

Описание движения жидкости в пограничном слое является более про-етой задачей по сравнению с точным решением основных уравнений движения вязкой и теплопроводящей жидкости. Уже из этого становится ясной целесообразность введения понятия пограничного слоя.  [c.370]

Уравнения движения. Вывод дифференциального уравнения движения вязкой жидкости требует громоздких математических выкладок. В связи с этим будет дан упрощенный, вывод этого уравнения для случая одномерного течения несжимаемой жидкости [Л. 124]. Этот вывод не является строгим, его основное достоинство заключается в наглядности. Для трехмерного двигкения уравнение будет приведено без вывода. Уравнения движения подробно рассматриваются в курсах гидродинамики и монографиях по теплопередаче, например в [Л. 202].  [c.132]


О ТОМ, что главные напряжения в каждой точке улругого тела пропорциональны соответственным главным удлинениям. Но наряду с упругим телом Коши рассматривал и неупругое тело и жидкость. В своей основной работе ), сообщение по которой было сделано ещё в 1822 г., в 3 Коши рассматривает движение внутри неупругой среды и вместо проекций смещений вводит проекции вектора скорости смещения и свою основную гипотезу формулирует так главные напряжения в каждой точке пропорциональны мгновенным главным удлинениям или сжатиям. На основании этой гипотезы Коши получает дифференциальные уравнения, отличающиеся от современных уравнений движения вязкой жидкости только отсутствием слагаемого с давлением. Затем он видоизменяет свою гипотезу, полагая напряжение состоящим из двух слагаемых, из которых первое считается пропорциональным мгновенным сжатиям или расширениям, а второе считается зависящим только от положения точки. Далее, второе слагаемое принимается пропорциональным скорости объёмного расширения. Вследствие этого получаются дифференциальные уравнения, сходные с уравненрмми движения вязкой сжимаемой жидкости. Таким образом, Кощи, создавая основные понятия теории упругости, вместе с этим установил и некоторые основные понятия теории движения вязкой жидкости.  [c.19]

Основным методом изучения закономерностей турбулентного движения ещё и до сих пор служит экспериментальный метод различные теории турбулентности играют пока лишь вспомогательную роль. В предшествующих главах было показано, что отдельные случаи ламинарных течений могут быть изучены с помощью решения соответственных краевых задач либо на основе точных уравнений движения вязкой жидкости, либо на основе приближённых уравнений, полученных из точных с помощью отбрасывания групп отдельных слагаемых. При этом решения задач включали в себе коэффициент вязкости жидкости и параметры самой задачи и не содержали в себе какие-либо произвольные постоянные, за определением которых необходимо было обращаться к отдельным опытам, воспроизводящим рассматриваемую задачу. Существующие же теории турбулентности ещё не позволяют отдельные случаи турбулентных движений изучать с помощью решения краевых задач на основе каких-либо дифференциальных уравнений.  [c.437]

При получении решений основных уравнений теории приливов точными методами гидродинамики встречаются большие математические трудности. В связи с этим уже при постановке задач подобного рода их приходится весьма схематизировать. Необходимость изучения приливных явлений для конкретных географических объектов вызвала широкое развитие расчетных методов, ставяш их своей целью получение с возможно большой степенью точности и с экономной затратой труда приближенных решений основных уравнений теории приливов. При этом предпринимаются и попытки модификации основных уравнений Лапласа с целью приближенного учета придонного трения. Так, например, путем осреднения по глубине бассейна уравнений движения вязкой жидкости в основные уравнения теории приливов вводятся дополнительные слагаемые, учитывающие приливное трение, что в свою очередь требует введения новых гипотез о зависимости силы трения от скоростей приливо-отливных течений или их градиента и глубины бассейна.  [c.82]

Основные дифференциальные уравнения движения вязкой жидкости в пограничном слое были даны в 1904 г. Л. Прандтлем. Дальнейшее развитие теория пограничного слоя получила в работах зарубежных ученых Блазиуса, Хименца, Польгаузена, Карма-  [c.240]

Основные уравнения движения вязкой несжимаемой жидкости могут быть записаны через скорости и давление, причем скорости должны удовлетворять уравнению неразрывности для несжимаемой жидкости. Другой способ записи двухмерных уравнений связан с использованием функции тока ф, удовлетворяющей уравнению неразрывности. При этом уравнения качичества движения объединяются в одно уравнение более высокого порядка, требующее непрерывности как самой функции тока, так и ее производных. В случае трехмерных течений ситуация усложняется, поскольку при этом подходе требуются три функции тока.  [c.243]

Все теоретические исследования о движении вязкой жидкости исходят из предпосылки о справедливости уравнений Навье —Стокса для истинного неустановившегося пульсирующего движения. Однако ввиду крайней запутанности, извилистости и сложности траекторий частиц жидкости при турбулентном движении и, повидимому, вообще всех основных функпиональных связей получение решения уравнений Навье — Стокса для таких движений представляет собой крайне громоздкую и сложную задачу, которую можно сравнить с задачей об описании движения отдельных молекул большого объёма газа. Поэтому, подобно тому как в кинетической теории газов, так и в гидромеханике основные задачи о турбулентных движениях жидкости ставятся как задачи о разыскании <функциональных соотношений между средними величинами.  [c.128]

Курс содержит четыре части, В первой из них, общей для всех частей, излагаются основные понятия кинематики и основные уравнения движения произвольной сплошной среды. Вторая часть посвящена из-ложению элементов некоторых разделов гидродинамики, уравнения движения идеальной и вязкой жидкости, аэродинамика, волновые движения у пограничный слой. Особое внимание в этом разделе уделено плоскопараллельным движениям и двумерным движениям вдоль криволинейных поверхностей. Теория фильтрации, которой посвящена третья часть у рассматривается с точки зрения применения методов гидродинамики к решению технических краевых задач. Последняя, четвертая, часть посвящена уравнениям теории упругости и применению их к некотх)рым конкретным задачам. Втюрая и третья части а также частично третья часть, независимы друг от друга и могут изучаться отдельно.  [c.2]

Однако полученное движение вязкой жидкости, помимо того, что для него основные уравнения гидромеханики выполняются лишь при-Г лчжённо, обладает ещё тем недостатком, что для него условие при-  [c.501]

При помощи этого решения из уравнения переноса получается приближение основной системы уравнений сплошной среды, используемое для изучения движения невязких газов и жидкостей. Следующее приближение f служит для вывода уравнений движения вязких газа и жидкости. Отыскивая методом Чэпмэна-Энскога третье приближение решения кинетического уравнения, получаем уравнения, с помощью которых можно решать задачи о движении сильно разреженных газов — задачи молекулярной аэродинамики, весьма актуальные для исследования движения ракет и спутников в верхних слоях атмосферы.  [c.21]

И если применительно к классическим моделям идеальной и вязкой жидкости первый этап успешно давно решен — уравнения Эйлера и Навье — Стокса выглядят обманчиво просто, то второй и третий этапы встречают до сих пор огромные трудности. Эти трудности связаны прежде всего с нелинейностью основных уравнений движения. ГГрименительно к идеальной жидкости Г.Гельмгольц установил [ 135], что все возможные интегралы уравнений Эйлера делятся на два широких класса,отвечающих так называемому потенциальному и вихревому движению.Г.Гельмгольц детально исследовал основные общие свойства интегралов вихревого движения и, по словам  [c.6]



Смотреть страницы где упоминается термин Основные уравнения движения вязкой жидкости : [c.371]    [c.185]    [c.148]    [c.99]    [c.6]    [c.150]    [c.151]    [c.394]    [c.114]    [c.555]    [c.21]    [c.165]   
Смотреть главы в:

Математические основы классической механики жидкости  -> Основные уравнения движения вязкой жидкости



ПОИСК



283 — Уравнения жидкости

33 — Уравнения основные тел вязких

Вязкая жидкость в движении

ГИДРОМЕХАНИКА ВЯЗКОЙ ЖИДКОСТИ ОБЩИЕ СВОЙСТВА ДВИЖЕНИИ ВЯЗКОЙ ЖИДКОСТИ Основные уравнения

Движение вязкой жидкости

Жидкости вязкие — Уравнения движения

Жидкость вязкая

Основное уравнение движения

Основные уравнения движения

Основные уравнения движения вязкой жидкости Понятие вязкой жидкости

Основные уравнения движения жидкости

Приближённые решения уравнений движения вязкой жидкости в случае больших чисел Рейнольдса Общая характеристика течений при больших числах Рейнольдса. Вывод основных уравнений теории пограничного слоя

Уравнение основное

Уравнения движения вязкой жидкости

Уравнения движения жидкости

Уравнения основные

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте