Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способы повышения износостойкости детали

В некоторых исследованиях изучалось изнашивание металлов об абразивную частично закрепленную массу, об абразивную прослойку, при ударно-абразивном воздействии. Было исследовано влияние структуры сплавов, температуры нагрева, агрессивной и нейтральной среды и т. д. Исследовался также механизм царапанья единичным твердым зерном. Исследовательские работы в области абразивного изнашивания были в СССР выполнены главным образом с целью выявления способов повышения износостойкости типовых деталей машин в разных отраслях машиностроения. В этих исследованиях условия трения создавались соответствующими условиями службы деталей определенного типа, поэтому абразивное изнашивание осуществлялось при наличии дополнительных влияний, специфических д я каждой типовой детали.  [c.49]


Удельное давление — один из главных, но не единственный фактор, определяющий скорость изнашивания. Поэтому расчеты по удельным давлениям дают лишь сугубо ориентировочные сравнительные данные по размерам сопряжений, а в ряде случаев могут привести к неправильным выводам о способах повышения износостойкости конструкции. Они не дают возможности определить срок службы детали по износу.  [c.97]

Испытания еа изнащивание могут производиться с исследовательскими целями, например для изучения самого явления изнашивания, и с практическими целями, например для проверки способов повышения износостойкости материала детали, определения пригодности материала-заменителя и т. п. Ниже рассматриваются принципы постановки лабораторных испытаний, проводимых при решении практических задач.  [c.40]

Для повышения износостойкости узлов трения в химическом машиностроении применяются композиционные пластмассы (с бронзой) для поршневых колец компрессоров, подшипников скольжения и др., а также возбуждающие ИП смазочные материалы в узлах трения сталь—бронза. Указанные способы предотвращения износа недостаточно эффективны при коррозионно-механическом изнашивании трущихся соединений, наблюдающемся при трении в насосах, перекачивающих кислоты и щелочи, в аппаратуре с перемешивающими устройствами и другом химическом оборудовании. Трущиеся детали изготавливаются из коррозионно-стойких сталей, а смазывание их производится водой либо исходным сырьем для получения химического продукта, большей 176  [c.176]

Химико-термическая обработка является одним из способов изменения химического состава стали и предназначена для придания поверхностным слоям деталей машин требуемых физико-механических свойств повышенных износостойкости, коррозионной стойкости, окалино- и жаростойкости. Производится химико-термическая обработка путем нагрева детали в специальной среде (карбюризаторе) до определенной температуры, выдержки при этой температуре и охлаждения. При этом происходит насыщение поверхностного слоя активным элементом (хромом, азотом, углеродом, алюминием и т. п.), в результате чего изменяются физико-механические свойства материала обрабатываемой детали износостойкость, жаростойкость, коррозионная устойчивость и т. п.  [c.398]

Пластмассы в ремонтной практике наносят на поверхности деталей для восстановления их размеров, повышения износостойкости и улучшения герметизации. Одновременно покрытие из пластмассы снижает шум от трения и повышает коррозионную стойкость изделия. Тонкий слой пластмассы практически не ухудшает прочностных показателей металла и придает детали податливость, т. е. способность принимать форму сопряженной детали, что приводит к резкому увеличению площади контакта. Пластмассы наносят литьем под давлением, горячим прессованием, вихревым, газопламенным и центробежным способами.  [c.211]


Нанесение пластмассовых покрытий. Нанесение тонкослойных покрытий на металлические детали является одним из весьма перспективных способов использования пластмасс в машиностроении и ремонтной практике. Такие покрытия наносятся главным образом с целью защиты деталей от коррозии, повышения износостойкости и антифрикционных свойств трущихся деталей, электроизоляции и др.  [c.55]

Наплавка твердыми сплавами является одним из наиболее рациональных методов повышения износостойкости работающих деталей. Твердые сплавы наплавляются на вновь изготовляемые и изношенные детали ручным способом или с помощью полуавтоматов и автоматов.  [c.550]

Итак, химико-термическая обработка применяется к деталям, у которых необходимо повысить износостойкость, коррозионную стойкость и окалиностойкость поверхностных слоев. Для повышения поверхностной твердости и износостойкости в машиностроении применяют цементацию, азотирование, цианирование, хромирование. Для повышения коррозионной стойкости детали подвергают азотированию, хромированию и силицированию (насыщению кремнием). Для повышения окалиностойкости детали подвергают алитированию (насыщению алюминием). Разработаны способы по-  [c.177]

Электроискровая обработка. Упрочнение деталей этим способом основано на ударном воздействии направленного искрового разряда, вызывающего взрыв на поверхности детали в точке приложения импульса. В результате происходит перенос металла и упрочнение поверхности детали. Важную роль в повышении износостойкости и усталостной прочности деталей играют подбор пар трения и их смазки, а также применение защитных покрытий.  [c.81]

Внедрение полимерных материалов в ремонтном производстве сопровождалось широким исследованием пластмасс на изнашивание, а в конечном итоге были разработаны способы восстановления деталей пластмассами [127]. Кроме того, разработаны методики оценки проектируемых машин на ремонтную технологичность, а также основные направления по повышению надежности и долговечности машин в процессе их капитального ремонта. Эти работы весьма полезны для конструкторов и технологов, проектирующих новые машины, так как они способствуют созданию машин, эксплуатация которых обойдется значительно дешевле и даст возможность восстанавливать заданный уровень надежности в процессе ремонта. Все работы посвящаются конструктивно-технологическим основам создания надежных машин и развитию ремонтопригодности машин в свете проблемы надежности. Наибольший интерес среди этих работ представляет создание и исследование износостойкости прерывистых металло-пластмассовых поверхностей трения в узлах трения машин и механизмов. Результаты исследования таких поверхностей на изнашивание показали, что во многих узлах трения машин и механизмов с успехом можно заменить детали из цветных металлов чугунными в конструктивно-технологическом соединении с полимерными материалами, так как износостойкость последних во много раз выше, а следовательно, и срок службы их больше, что в значительной мере будет способствовать решению проблемы создания надежных машин и механизмов.  [c.19]

Способ получения сопряжения деталей с ремонтными размерами бывает основным при освоении ремонта изделий, когда ограничены или отсутствуют мощности по нанесению восстановительных покрытий. Восстанавливаемый элемент более дорогой и трудоемкой детали сопряжения обрабатывают под ремонтный размер. Другую сопрягаемую деталь изготовляют или приобретают. Способ обеспечивает наименьшую трудоемкость восстановления, правильную геометрическую форму восстанавливаемых элементов и возвращает сопряжению деталей первоначальный зазор. Однако реализация способа требует больших затрат на приобретение заменяемой детали, а в эксплуатации возможен повышенный износ подвижного сопряжения из-за снятия наружного более износостойкого слоя материала, а также снижение усталостной прочности шеек валов.  [c.139]

Базовые детали станков отливают из чугуна марок СЧ 21-40, СЧ 15-32 и модифицированного. Направляющие из чугуна должны иметь твердость, НВ 170—255. В некоторых случаях базовые детали изготовляют сварными из листовой стали марок Ст. 3, 35 и 45. Они имеют меньший вес, чем детали из чугунных отливок. Применяются сварные базовые детали главным образом при единичном изготовлении станков. Очень большое значение имеет для базовых деталей высокая износостойкость направляющих, повышение которой достигается следующими способами  [c.218]


Защитные свойства оксидных пленок на железе и стали невелики, поэтому оксидирование применяется для защиты стали от атмосферной коррозии в легких (комнатных, цеховых) условиях эксплуатации. Когда наряду с защитой от коррозии детали требуют сохранения строго калиброванных размеров и красивого внешнего вида (измерительный инструмент, ответственные детали приборов и оружия и др.), применяют щелочное оксидирование. Способ парового оксидирования часто применяется для защиты от коррозии режущего инструмента, сверл, метчиков, фрез, разверток и т. д. В этом случае удается, наряду с повышением защитных, антикоррозионных свойств, значительно повысить износостойкость и, кроме того, совместить процесс оксидирования с высокотемпературным отпуском деталей.  [c.191]

Износостойкость зависит и от качества поверхностного слоя детали. Существуют различные технологические способы улучшения поверхностного слоя, например закалка, цементация, механическое упрочнение и т. д. Применение того или иного из этих способов зависит от условий эксплуатации деталей. Так, закалка может уменьшить износ поверхности, но она требует более высокой чистоты обработки. Это вызвано тем, что при твердых трущихся поверхностях зазоры, как правило, меньше. Повышение твердости сводит на нет влияние пластических деформаций.  [c.198]

Сущность процесса абразивно-жидкостной обработки деталей состоит в том, что из форсунки струю абразивной суспензии под давлением с большой скоростью направляют на обрабатываемую деталь. Абразивно-жидкостным способом обрабатывают детали, поверхности которых в целях повышения их износостойкости, усталостной прочности и других свойств не должны иметь грубых дефектов.  [c.90]

Оксидные покрытия получают путем химической или электрохимической обработки поверхности металла. Эти способы называются оксидированием, воронением, анодированием. Химическое оксидирование сталей проводят путем нагрева их в растворе, содержащем едкий натр и нитрит натрия. Получающаяся оксидная пленка в зависимости от толщины имеет различный цвет — от светло-синего до черного. При воронении пленка получается черного цвета. При электрохимическом воронении к детали подсоединяют положительный полюс источника тока, ускоряя тем самым процесс образования пленки. Получающаяся оксидная пленка имеет поры. Для повышения защитных свойств пленки ее подвергают обработке маслами. Для получения оксидной пленки на алюминии применяют анодирование, которое осуществляется электрохимическим способом в растворе, содержащем хромовый ангидрид, серную и щавелевую кислоту. Пленка, полученная таким способом, хорошо защищает металл от коррозии, является износостойкой и обладает электроизоляционными свойствами.  [c.483]

В связи с форсированием двигателей возрастают механическая и термическая нагрузки на детали цилиндропоршневой группы. Тепловые нагрузки могут препятствовать повышению эффективности двигателя. Одним из способов снижения тепловой напряженности, повышения экономичности и износостойкости двигателя является применение теплоизолирующих защитных покрытий.  [c.146]

Величина износа деталей зависит от многих факторов, к которым относятся давление и скорость относительного перемещения деталей, температурный режим, материал и твердость деталей, шероховатость рабочих поверхностей, способ подвода масла, его качество и расход. С увеличением давления, скорости относительного перемещения поверхностей и повышением температуры интенсивность изнашивания деталей возрастает. Большое влияние на износостойкость оказывает правильный выбор материала, из которого изготовлены детали. При жидкостном трении величина износа меньше, чем при других видах трения. В несколько раз можно уменьшить износ деталей, используя масла со специальными добавками.  [c.144]

Назначение КЭП — не только придание большей прочности и износостойкости по сравнению с теми же характеристиками контрольных покрытий, но и повышенной жаростойкости защищаемым изделиям. Такие КЭП, так же как и КМ. и покрытия, получаемые иными способами, предназначены защищать от агрессивных сред детали авиационных двигателей [2, 9, 18, 21, 24]. Преимущества и особенности химического поведения конкретных КЭП будут рассмотрены ниже.  [c.157]

В машиностроении упрочнение наклепом получило широкое распространение благодаря работам И. В. Кудрявцева [49] и других исследователей. Повышение усталостной прочности деталей, восстанавливаемых наплавкой и другими способами и упрочненных наклепом, объясняется рядом причин повышением прочности поверхностных слоев металла и снижением их чувствительности к концентрации напряжений, уменьшением величины внутренних растягивающих напряжений вследствие суммирования с ними возникающих при наклепе напряжений сжатия, уменьшения поверхностных дефектов и др. Пластическое поверхностное деформирование улучшает такие характеристики деталей, как шероховатость поверхности, износостойкость, сопротивляемость коррозии. При пластическом деформировании благодаря взаимодействию сил, действующих в поверхностных и внутренних слоях детали, возникают напряжения различного знака в поверхностных слоях отрицательного знака — напряжения сжатия, во внутренних слоях положительного — растягивающие напряжения. Известно, что растягивающие напряжения снижают усталостную прочность деталей, тогда как сжимающие повышают ее. При одних и тех же режимах упрочнения глубина наклепа высокоуглеродистых и легированных сталей получается меньшей, чем у малоуглеродистых сталей, хотя величина остаточных напряжений у них более высокая.  [c.315]


Наряду с износостойкостью толстая оксидная пленка, сформированная электрохимическим способом, обладает хорошими электро- и теплоизоляционными свойствами. Это позволяет применять обработанные детали в условиях изнащивания при повышенных температурах. Высокая износостойкость оксидных пленок позволяет использовать алюминий и его сплавы вместо тяжелых металлов (прежде всего сталей), что позволяет облегчить конструкцию и улучшить экономические показатели.  [c.376]

Тем не менее процесс железнения имеет существенные недостатки. Сцепление металла детали с нанесенным металлом значительно хуже, чем при хромировании. Твердость нанесенного слоя составляет всего лишь НВ 170—200. Следовательно, детали машин, восстановленные таким способом, имеют низкую износостойкость. Для ее повышения необходимо нанесенный слой металла подвергать химико-термической обработке, например цементации с последующей закалкой и отпуском. При большой глубине износа восстанавливаемых деталей целесообразно первые слои наращивать железнением или металлизацией, а последний — хромированием.  [c.7]

Н. Н. Бенардосом и Н. Г. Славяновым. Впоследствии электроду-говая наплавка нашла широкое применение в ремонтном деле. В настоящее время стоит задача замены наплавки открытой дугой наплавкой под флюсом, при восстановлении деталей машин, и дальнейшего расширения объема работ, выполняемых этим способом, путем изготовления новых биметаллических изделий. Пока достигнуты успехи по наплавке под флюсом лишь некоторых объектов. Так, например, значительное повышение стойкости прокатных валков было получено путем наплавки под флюсом порошковой проволокой слоя износостойкого металла. Наплавляются под флюсом бандажи вагонных колес, детали сельскохозяйственных машин и др.  [c.118]

Основное назначение поверхностной закалки - повышение твердости, износостойкости и предела выносливости разнообразных деталей (зубьев шестерен, шеек валов рис. 41), направляющих станин металлорежущих станков и др.). Сердцевина детали после поверхностной закалки остается вязкой и хорошо воспринимает ударные и другие нагрузки. В промышленности применяют следующие способы поверхностной закалки газопламенную закалку закалку с индукционным нагревом токами высокой частоты (ТВЧ) закалку в электролите. Общим для всех способов  [c.91]

К способам химико-термического насыщения поверхности, применяемым для повышения ее абразивостойкости, можно отнести цементацию, цианирование, диффузионное хромирование. Эти способы в сочетании с последующей термообработкой, могут давать повышение износостойкости детали во много раз.  [c.88]

На детали, подвергающиеся при эксплуатации значительному износу, наплавляют сплавы, обладающие повышенной твердостью. Нанесение износостойкого слоя на поверхность стали осуществляется наплавкой электродами, присадочными ирутками, зернистыми порошками, содержащилп легирующие элементы, а также за счет перехода износостойких металлов и их соединений из специальных флюсов (обмазок) при расплавлении. Чем больше карбидов в наплавленном слое и чем он тверже, тем он более износоустойчив. Один из наиболее дешевых способов нанесения износостойкого слоя на поверхности детали — наплавка отбеленного чугуна, при которой наплавленный слой обладает повышенной твердостью и износостойкостью за счет выделения карбида железа.  [c.292]

Элвктроисировой способ используют для восстановления размеров поверхностей деталей, изнашивание которых не превышает 0,05 — 0,06 мм (при тугих и напряженных посадках) повышения износостойкости рабочих поверхностей детали.  [c.272]

Процесс химического никелирования широко применяют во многих отраслях машиностроения СССР. На ряде предприятий его используют для повышения износостойкости и защиты от коррозии деталей точных приборов и механизмов, предназначенных для эксплуатации как в обычных условиях, так и в условиях тропического климата (например, детали счетноаналитических машин и др.). В приборостроительной промышленности этим способом наносят покрытия на детали, изготовленные из стали, медных и алюминиевых сплавов и имеющие сложную конфигурацию (длинные и узкие каналы, глухие отверстия, резьбу и т. п.). Его применяют в оптической, электротехнической промышленности. Осаждение металлов методом химического восстановления получило большое развитие в США, Англии, Франции, ФРГ, Японии и других странах. В химической, нефтяной и других отраслях промышленности этих стран химическое никелирование используют для защиты крупных деталей сложного профиля, эксплуатирующихся в коррозионноагрессивных средах. Покрытия наносят на детали из различных сталей, чугуна, меди и ее сплавов, алюминиевых, магниевых и титановых сплавов и др., а также из неметаллов. С целью повышения износостойкости никелируют многочисленные детали автомобильной и авиационно-ракетной техники алюминиевые поршни, детали реактивных двигателей, внутреннйе стенки цилиндров компрессоров, насосов, детали очистительно-осушительных систем, бензиновые баки, цистерны для перевозки и баки для хранения различных химических веществ, детали арматуры атомных реакторов, в том числе длиноразмерные трубы, волноводы радиолокационных установок, лопатки компрессоров. Никелируют печатные схемы, что обеспечивает хороший контакт между обеими сторонами панели, так как все отверстия полностью покрываются никель-фосфорным слоем.  [c.307]

Существуют различные способы поверхностного упрочнения деталей, повышения их коррозионной стойкости и снижения трения сопрягаемых трущихся поверхностей. К иим относятся поверхностная термическая обработка, легирование поверхности детали наплавкой сплавов, отвечающих необходимым требованиям, гальваническое наиесение на поверхность детали антикоррозийных покрытий и т. д. Одним из способов легирования поверхности детали или ее элементов является электроискровое легирование, которое сопровождается различными физико-химнче-скими превращениями поверхностного упрочненного слоя детали. Оно позволяет повысить износостойкость и твердость, жаростойкость, коррозионную стойкость поверхностей деталей н снизить их коэффициент трения, а также произвести ремонт и восстановить размеры изломанной детали, придав ее поверхностному слою новые свойства.  [c.130]

В ряде случаев более шероховатая поверхность лучше удерживает смазку и уменьшает износ. Некоторые исследователи придерживаются мнения, что наиболее гладкая поверхность после механической обработки является лучшей в отношении сокращения периода приработки и повышения качества поверхности после приработки. Анализ проведенных исследований показывает, что отсутствие стабильности шероховатости поверхности для одних и тех же деталей соединения позволяет понимать оптимальную шероховатость поверхности как определенную область шероховатостей, при которой детали машин получают наименьший износ при заданных условиях работы. На износостойкость оказывают влияние не только величина неровностей, но и их направление, способы формирования поверхностных слоев и их физико-механические свойства. Наиболее износостойкой является поверхность с одинаковой микрогеометрией во всех направлениях. Такая поверхность в виде мелконаколотой сетки получается, например, после гидрополирования.  [c.394]

Хромирование. Термодиффузионное насьпцение хромом порошковых деталей способствует повышению их физико-химических и механических свойств, уменьшению поверхностной пористости, повышению сопротивляемости коррозии, окалино-и износостойкости. Наиболее простым методом хромирования порошковых деталей является так назьшаемый контактный способ. Этот способ состоит в насьпцении изделий хромом в твердом ме-таллизаторе. В ходе высокотемпературной химикотермической обработки возникает хромосодержащая газовая фаза, благодаря которой и происходит насьпцение поверхности детали хромом. Состав металлизатора и режимы термодиффузионного хромирования приведены в табл. 9.16 (состав 1).  [c.484]


Изменение механических свойств инструментальной стали К14 в зависимости от температуры закалки и отпуска, а также продолжительности обработки представлено в табл. 105. Из этих данных (см. также рис.. 202) следует, что увеличение температуры закалки стали марки К14 выше 1000° С только в незначительной степени улучшает прочностные характеристики, при этом вязкие свойства ухудшаются. Стали, полученные методом электрошлакового переплава и, кроме того, хорошо обработанные путем пластической деформации, по сравнению с обычными инструментальными сталями, имеют более высокие значения вязкости при одних и тех же значениях прочности. Поэтому стали, полученные способом переплава, можно закаливать на ббльшую прочность (твердость) и благодаря этому увеличить износостойкость и долговечность инструмента. С уменьшением скорости охлаждения (охлаждение в масле или в соляной ванне вместо охлаждения на воздухе) или же с увеличением количества заэвтектоидных карбидов и содержания бейнита (см. рис. 199, б) в значительной степени ухудшаются прочностные и главным образом вязкие свойства сталей. Наиболее предпочтительные свойства получаются при ступенчатой закалке в соляной ванне. На прогрев детали с толщиной поперечного сечения 100 мм требуется около 15 мин. При закалке в масле нет необходимости держать детали в масле до полного охлаждения, а достаточно только до тех пор, пока температура сердцевины не достигнет 500° С. При толщине поперечного сечения 100 мм на охлаждение требуется таким образом около 8 мин, а при толщине 250 мм 25 мин. Повышение температуры отпуска выше 600° С приводит к ухудшению вязких свойств стали марки К14, а также сталей, полученных способом электрошлакового переплава. Сталь марки К14 более склонна к обезуглероживанию, чем стали марок К12 и К13. Обезуглероживание можно уменьшить путем цементации упаковкой в ящики с твердым карбюризатором При повышении температуры отпуска теплостойкой штамповой инструментальной стали для горячего деформирования марки 40 rMoV5.3 с содержанием 3% Мо и 5% Сг снижаются прочностные характеристики, растет значение ударной вязкости, значение вязкости при разрушении вначале также увеличивается. Путем отпуска при температуре 560—580° С можно добиться более благоприятного сочетания свойств. Отпуск при температуре выше 600° С охрупчивает эту сталь в меньшей степени, чем сталь К14.  [c.249]

В настоящее время предприятия, ремонтирующие автосцепку начинают применять наплавку износостойким металлом, позволяю щую существенно увеличить межремонтный период работы детали и следовательно, сократить затраты на содержание устройства. В це лях широкого внедрения этого прогрессивного способа изготавливает ся и рассылается в централизованном порядке специальная полуавтоматическая установка для наплавки автосцепки УНА-2, на которой тяговые и ударные поверхности контура зацепления наплавляют лежачим пластинчатым электродом под слоем флюса. Повышение твердости наплавленного металла до 400НВ достигается благодаря применению пакетированной легирующей присадки, которая плавится вместе с электродом.  [c.155]

Наряду с конструктивными методами снижения нолп1нальных и местных напряжений существует обширный арсенал технологических способов упрочнения элементов машин (табл. 12). Наиболее распространенной является закалка деталей машин. Она обеспечивает общее упрочнение деталей, повышение их износостойкости, надежности прессовых соединений. В частности, ее разновидность — сорбитизацию — процесс с образованием структуры сорбита, эффективно используют для упрочнения крановых колес. В части увеличения усталостной прочности и износостойкости эффективны также поверхностная закалка, химико-термическая обработка, пластическое деформирование (наклеп) поверхностей и термомеханическая обработка (ТМО). Два первых процесса имеют ряд общих особенностей а) упрочнению подвергается неглубокий поверхностный слой 1материала деталей, а глубинные слон не претерпевают существенных превращений, благодаря чему металл сердцевины остается вязким, что обеспечивает высокую несущую способность детали при ударных нагрузках б) в упрочненном поверхностном слое возникают значительные сжимающие остаточные напряжения, что ослабляет влияние концентрации напряжений от внешней нагрузки и повышает сопротивление детали усталостному разрушению.  [c.51]

При поверхностной закалке сокращается время обработки деталей, что увеличивает производительность оборудования. Появляется возможность включения операций закалки и отпуска в общий поток обработки на металлорежущих станках и полной или частичной механизации и автоматизации производственных процессов. Повышение долговечности при поверхностном упрочнении объясняется следующим 1) в поверхностных упрочненных слоях создаются остаточные напряжения сжатия 2) прочность металла различна по глубине (максимальная прочность на поверхности) и соответствует условиям работы деталей при изгибе и кручении 3) поверхностные слои закаленных деталей, имея высо сие твердость, прочность и износостойкость, обеспечивают достаточную прочность всей детали. В современном машиностроении методы поверхностного термического упрочнения сочетаются с методом холодной пластической деформации (обкатка роликами, наклеп дробью), что приводит к увеличению напряжений сжатия в поверхностных слоях и увеличивает срок службы деталей. Нагрев при поверхностной закалке может производиться разными способами токами высокой и промышленной частоты, газовым пламенем (обычно ацетилено-кислородным) и в электролите.  [c.84]

Повышение твердости материала различными способами неоднозначно влияет на износостойкость при абразивном изнашивании, рис. 74. Повышение твердости путем применения более твердых материалов без термической обработки увеличивает износостойкость пропорционально твердости (прямая 1 на рис. 74). Увеличение твердости за счет термической обработки сталей повышает износостойкость, но в меньшей степени (кривая 2). Увеличение твердости за счет наклепа не сказывается на повышении износо-ройкости (кривая 5). Однако повышение твердости стали только за счет изменения химического состава недостаточно для обеспечения требуемой износостойкости деталей. Поэтому в зависимости от условий работы детали в процессе изготовления подвергают различной термической или химико-термической обработке, добиваясь тем самым необходимой (различной) твердости и износостойкости, рис. 75 [78]. Из всех закалочных структур наиболее высокой износостойкостью отличается мартенсит (рис. 76).  [c.193]

Наплавка изношенных поверхгюстей рекомендуется в тех случаях, когда детали не может быть возвращена работоспособность способом под ремонтный размер. Наплавку применяют также для защиты деталей от повышенного изизшива ния (наплавка износостойкими сплавами). Наряду с ру чной наплавкой, наиболее широко распространенной в ремонтной практике, все чаще применяют методы автоматической наплавки под флюсом и автоматической виброконтактной наплавки.  [c.271]

Химическое палладирование применяют для повышения термостойкости, износостойкости и электропроводности поверхностного слоя деталей, а в ряде случаев с целью замены золотых и других драгоценных металлов в радиоэлектронике и некоторых других отраслях промышленности. Химический способ палладирования целесообразно, в первую очередь, использовать для покрытия деталей сложного профиля. Перед покрытием детали (стальные, никелевые, серебряные) обезжиривают, травят и декапируют принятыми для этих материалов методами. Медь и ее сплавы необходимо перед палладированием покрыть серебром или никелем (химическим или электрохимическим способом). Затем детали загружают в раствор для химического палладирования. Состав одного из таких растворов следующий (г/л) хлористый палладий — 4, трилон Б — 12, гидразин гидрат — 2, аммиак 300— 350 мл/л. Для приготовления ванны необходимое количество хлористого палладия растворяют (при нагревании) в 25%-м растворе аммиака, взятом в половинном объеме, указанном в рецептуре, потом добавляют трилон Б и остальное количество аммиака. Полученный раствор фильтруют. Перед загрузкой деталей, в ванну добавляют 5%-й раствор гидразина гидрата, являющегося в этом процессе восстановителем. Через каждые 30 мин работы раствора в него добавляют половину указанного в рецептуре количества гидразин гидрата, / = 50—55° С, соотношение между объемом раствора и площадью покрываемой поверхности (плотность загрузки) 3 1. Скорость ос аждения покрытия 1—2 мкм/ч. Для ускорения процесса детали встряхивают. Толщину покрытия определяют весовым методом с помощью образца — свидетеля . Раствор для палладирования можно регенерировать по специальной методике. Так как растворы для химического палладирования не отличаются устойчивостью, необходимо тщательно предохранять их от всякого рода загрязнений.  [c.185]


Поверхностное пластическое деформирование, осуществляемое при температурах, меньших температуры рекристаллизации [20] - технологически простой и эффективный метод улучшения свойств поверхностного слоя деталей - находит широкое применение в производственной практике. Применение ППД позволяет при минимальных затратах повысить сопротивление усталости [36-41], износостойкости [8, 70], сопротивление усталости в коррозионной среде [20, 69], получать минимальную шероховатость поверхности без существенного изменения размеров и исключение насыщения слоя абразивом [15, 50, 63, 93], повышать прирабатывае-мость [63-66]. Простота метода, дешевизна делают его пригодным для всех металлов и сплавов (исключение составляет олово и некоторые другие металлы, у которых температура рекристаллизации ниже комнатной) и практически доступным для упрочнения деталей любой конфигурации. Кроме того, механические способы упрочнения поверхностным наклёпом имеют еще ряд преимуществ перед другими методами поверхностного упрочнения границы наклёпанной поверхности не являются зонами пониженной прочности (перенаклёп, как вредное явление, не рассматривается), как это, например, имеет место при поверхностной закалке и некоторых других методах эффективность наклёпа значительно меньше зависит от режима обработки, чем это имеет место при других видах поверхностного упрочнения возможность создавать упрочнённые слои металла в широких пределах - от 0,28 мм при гидродробеструйной обработке до 40-50 мм при взрыве при повышении сопротивления усталости ударная вязкость материала снижается значительно меньше, чем при других методах поверхностного упрочнения. Упрочняются ППД как детали малых, так и очень крупных размеров.  [c.35]


Смотреть страницы где упоминается термин Способы повышения износостойкости детали : [c.157]    [c.249]    [c.219]    [c.283]    [c.228]    [c.141]    [c.407]    [c.654]   
Смотреть главы в:

Прочность и долговечность автомобиля  -> Способы повышения износостойкости детали



ПОИСК



273 — Износостойкость — Повышение

Детали Износостойкость

Износостойкость

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте