Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимические способы

Обезжиривание и травление. Металлическую поверхность можно обезжиривать различными растворителями, среди которых наиболее универсальными являются органические эфир, бензол, бензин, ацетон, спирт, четыреххлористый углерод. Рецептура растворителей и технология удаления жиров с различных металлических сплавов химическим и электрохимическим способами подробно рассмотрены в [42—44].  [c.88]

Показаны основные достоинства электрохимического способа получения неравновесных сплавов гальванопокрытий и перспективы применения их в различных отраслях промышленности.  [c.54]


Лопатки газовых турбин изготовляют из штампованных или литых заготовок и обрабатывают электрохимическим способом. Затем лопатки шлифуют и полируют. Компрессорные лопатки выполняют из штампованных заготовок, окончательная форма лопаток получается путем механической или- электрохимической обработки с последуюш,им шлифованием и полированием. В качестве материала для лопаток компрессоров и паровых турбин применяют нержавеющие стали, для лопаток газовых турбин — сплавы на никелевой и кобальтовой основе.  [c.29]

Для рабочих лопаток с каналами, выполненными электрохимическим способом, 0 = 0,23 0,32 при относительном расходе охлаждающего воздуха G = 1,0 4-2,0 %.  [c.246]

Необходимые способы очистки, их сочетание и требуемую чистоту контролируемых поверхностей определяют в технической документации на контроль. При высоком классе чувствительности контроля предпочтительны не механические, а химические и электрохимические способы очистки, в том числе с воздействием на объект контроля ультразвука или электрического тока. Эффективность этих способов обусловлена оптимальным выбором очищающих составов, режимов очистки, сочетанием и последовательностью используемых способов очистки, включая сушку.  [c.167]

Для защиты машин и приборов от воздействия коррозионных сред применяются электрохимические и химические способы нанесения покрытий Широко распространенный электрохимический способ имеет ряд суш.ественных недостатков, ограничиваюш.их его применение К ним относятся неравномерность распределения покрытия на деталях сложного профиля, трудности при нанесении покрытия на узлы, элементы которых изготовлены из различных металлов и неметаллов Химический способ нанесения покрытий лишен указанных недостатков  [c.3]

После никелирования производят термическую обработку в течение 1—2 ч при 200—220 С для снятия внутренних напряжений Удаление некачественного никелевого покрытия производят электрохимическим способом в растворе, содержащем 1070—1200 г/л серной кислоты и 8—10 г/л глицерина при комнатной температуре, анодной плотности тока 5—10 А/дм , напряжении 12 В, катоды — свинцовые  [c.30]

Были проведены коррозионные испытания многослойных покрытий в пищевых средах Коррозионные испытания показали одинаковую стойкость образцов, покрытых двухслойным покрытием электрохимическим никелем (20 25 мкм) с последующим электрохимическим хромом (0,4—О 5 мкм) н таких же образцов, покрытых электрохимическим никелем (20 25 мкм) и химическим хромом (0,1 мкм). Описанный способ хромирования рекомендуется вместо электрохимического способа хромирования для покрытия мелких деталей и детален сложного профиля по предварительно нанесенному слою никеля  [c.92]


Если при электрохимических измерениях возможны одновременно химический анализ и оптические -измерения, то желательно производить совместные измерения. Это позволяет устранить неясности, которые часто возникают при электрохимических способах измерения толщины поверхностной пленки.  [c.191]

В справочнике рассматривается преимущественно практика катодной защиты металлов, но обсуждаются также и теоретические основы и вопросы смежных дисциплин, если это необходима для более полного понимания происходящих процессов. Было признано полезным дать исторический обзор (введение), чтобы показать постепенное техническое развитие способа катодной защиты до современного уровня. В следующей главе рассмотрены необходимые теоретические основы коррозии металлов и способов защиты от нее. Представлены различные пары материал-среда, чтобы пояснить разнообразные возможности применения электрохимических способов защиты.  [c.17]

На рис. 2.2 и 2.5 уже пояснялся принцип электрохимического способа защиты. Необходимой предпосылкой для осуществимости такого способа защиты является наличие области потенциалов, в которой коррозионные реакции либо не идут вообще, либо идут с такой скоростью, что в технике ими можно пренебречь. К сожалению, нельзя заранее утверждать, что при любом виде электрохимической коррозии такая область обязательно будет существовать, поскольку области потенциалов для различных видов коррозии накладываются одна на другую и к тому же теоретические области защитного потенциала иногда вообще не могут установиться вследствие протекания побочных мешающих реакций.  [c.62]

Пределы применимости электрохимических способов защиты  [c.75]

Травление производится химическими и электрохимическими способами. Выбор способа травления зависит от характера и толщины покрывающих металл окислов. Вид травителя определяется характером его химического взаимодействия с окислами данного металла. Качество травления находится в прямой зависимости от качества удаления с поверхности изделий жировых загрязнений, поэтому травление следует проводить после операции обезжиривания.  [c.125]

Химические и электрохимические способы подготовки поверхности металлов перед нанесением защитных покрытий имеют множество разновидностей. Терминология применяемых методов, способы оценки качества подготовленной поверхности, специальные приемы и последовательность операций при подготовке поверхности под нанесение тех или иных покрытий регламентированы ГОСТами. При выборе конкретных методов подготовки руководствоваться ГОСТ 9.301—78.  [c.128]

Способы получения композитов Порошковая металлургия Окисление Электрохимические способы Выпадение частиц и т. д. Порошковая металлургия Пропитка Литье и т. д. Порошковая металлургия Пропитка в вакууме Направленное отверждение Электрохимические способы Намотка волокна Формовка при высоком давлении  [c.15]

Суш,ествует множество способов нанесения приработочных слоев на поверхность трущихся деталей химические, электрохимические, механические и плазменные. Электрохимическим способом осаждают чистые металлы и многокомпонентные сплавы.  [c.162]

Полирование радиусной фаски со стороны борта осуществляется на автомате абразивной лентой при скорости 20 м/с. Клеймение номера подшипника, года выпуска и номера государственного подшипникового завода выполняется на авто. ате электрохимическим способом.  [c.284]

Эти загрязнения удаляются в процессе травления сильными неорганическими (серной, соляной, фосфорной, реже плавиковой и др.) и органическими кислотами (муравьиной, уксусной). Чтобы удалить загрязнения, прибегают также к так называемому щелочному травлению — обработке крепкими щелочами едким натрием или калием в больших концентрациях и при повышенных температурах (до 100° С). Кроме этого, изделия обрабатывают в расплавах щелочей и солей при высоких температурах в окислительных средах (с нитратами) при 450—500° С и выше, в восстановительных средах с гидридом натрия при 350—400° С. При такой обработке удаляются жиры и масла, сажа и графит. Для удаления этих загрязнений все чаще используют ультразвук, а также электрохимические способы обработки.  [c.8]


Электрохимическое обезжиривание. На ряде заводов, особенно там, где покрытие наносится электрохимическим способом, аналогичным путем производится и обезжиривание.  [c.39]

Правку алмазных кругов осуществляют следующими методами (рис. 7) абразивными инструментами (обтачивание брусками, шлифование кругами, обкатывание кругами с относительным скольжением и без скольжения) доводкой свободным абразивным зерном электрохимическими способами (химическое травление, электроэрозия) путем подачи абразивной смазки в процессе работы алмазного круга.  [c.654]

Механизированные ваины для подготовки деталей под пайку химическим и электрохимическим способами  [c.23]

ПОД струёй воды. При невозможности механическим путём снять продукты коррозии, они удаляются одним из указанных в табл. 3 способов. При химическом или электрохимическом способе снятия продуктов коррозии необходимо предварительно убедиться в нерастворимости самого металла образца.  [c.126]

Химические и электрохимические способы снятия продуктов коррозии  [c.126]

Применение электрофизических и электрохимических способов размерной обработки материалов, предназначенных главным образом для отраслей новой техники, где широко применяются жаропрочные, нержавеющие, магнитные и другие высоколегированные стали и твердые сплавы, полупроводники, рубины, алмазы, кварц, ферриты и другие материалы, обработка которых обычными механическими способами затруднительна или часто невозможна. К числу электрофизических способов обработки относятся электроискровая, электроим-пульсная, электроконтактная и анодно-механическая.  [c.122]

Оксидирование алюминия осуществляют химическим и главным эбразом электрохимическим способом. Окненая пленка легко в(вникает па иоверхности алюминия в атмосфере или в растворах, содержащих кислород или другие окислители. В обычных атмосферных условиях толщина возникающей иа алюмишпг пленки не превышает 0,005—0,02 мкм.  [c.329]

Электрохимический способ оксидирования алюминия носит название анодирования. Широко распространенный способ анодирования алюминия в растворе серной кислоты проводится при температуре 20—30° С, анодной плотности тока 2 а1дм , напряжении 10—20 н и длительности процесса 10 мин. Анодирование дает возможность получить на алюминии пленку толщиной порядка 5—20 мкм, а в сиециальных случаях до 100—200 мкм. Пленка окиси алюминия при анодном окислении образуется в результате протекания анодной реакции  [c.330]

Расширилась номенклатура материалов, обрабатываемых электрохимическим способом, появились новые марки сталей, сплавы на основе ниобия, молибдена, вольфрама. Широко используется технология ЭХО в производстве изделий из титановых сплавов. Осваивается технология ЭХО заготовок из монокрнсталличсского молибдена и вольфрама.  [c.306]

Конструктор должен хорошо знать новейшие технологические процессы, в том числе физические, электрофизическне и электрохимические способы обработки (электроискровую, электронно-лучевую, лазерную, ультразвуковую, размерное электрохимическое травление, рб-работку взрывом, электрогидравлическим ударом, электромагнитным импульсом И т. я.). Иначе он будет стеснен а выборе рациональных форм деталей и ве сможет заложить в конструкцию условия производительного изготовления.  [c.71]

Д. М. Минцем и Я. Д. Раппопортом был предложен метод получения электрохимическим способом высококонцентрированных коагулирующих растворов путем анодного растворения в пластинчатых электролизерах обрезков железа или алюминия в водных растворах серной кислоты или поваренной соли. Это позволяет получать на месте потребления коагулирующие растворы с заранее заданными технологическими свойствами и затем дозировать их в обрабатываемую воду.  [c.221]

Достоинство процесса хроматирования при эксплуатации изделий с покрытиями — это возможность самовосстановления пассивной пленки в мезтах ее механического нарушения. По данным Т.Ф. Ажогина, во влажной атмосфере происходит процесс вторичного хроматирования ионами СГ2О7, имеющимися на поверхности металла. Пассивация, покрытий может происходить химическим, электрохимическим способом, а также при одновременном наложении ультразвукового поля и с использованием электрогидравлического эффекта.  [c.97]

В опытах авторов работы [54] кипение осуществлялось на трубах из нержавеющей стали 1Х18Н9Т диаметром 5,45X0,2 мм с пористым покрытием, полученным электрохимическим методом. Пористый слой осаждался электрохимическим способом из водных растворов солей и представлял собой композиции Fe—Ni, Fe—Ni— МО, Fe. После нанесения покрытия производилось спекание его в атмосфере водорода. Толщина слоя изменялась в пределах от 10 до 140 мкм. В работе приводятся зависимости q = f(At), полученные при кипении фреонов-12 и 22, а также аммиака на стальных и медных трубах диаметром 20—25 мм с металлизационным покрытием и с покрытием, полученным методом спекания металлических порошков. На рис. 7.22 приведены осредненные зависимости q = =f At), полученные в указанных опытах. Из рисунка видно, что интенсивность теплообмена на пористых металлических покрытиях, нанесенных металлизационным способом и методом спекания, при-  [c.220]

Количество внедренного в сталь водорода (VHj ) определено электрохимическим способом и самопроизвольной десорбцией водорода при 20 и 50° С в дибутнлфталате с определением осааточного водорода методом анодного растворения. Продолжительность наводороживания, мин / - 30 2 — 60 3 — 80 [107]  [c.118]

Пористость. Основной характеристикой, определяющей защитные свойства катодных покрытий, является их пористость В связи с тем, что Ni — Р-покрытия — катодные по отношению ко многим машиностроительным материалам (таким, как сталь, алюминиевые сплавы и др ), исследователи уделяют большое внимание пористости никелевого покрытия, осажденного химически Установлено, что химические Ni — Р-покрытия менее пористые, чем покрытия той же толщины но полученные электрохимическим способом. При определении пористости никелевых покрытий различной толщины было обнаружено [2], что химически восстановленные никелевые покрытия толщиной 8—10 мм по пористости соответствовали электролитическим осадкам толш.иной 20 мкм  [c.11]


В резутьтате обработки образуется тонкая пленка контактно-осажденного никеля надежно защищающая поверхность титана от окисления и являющаяся подслоем для дальнейшего осаждения покрытия На пленку можно наносить покрытия как химическим, так и электрохимическим способом  [c.31]

На рис. 54 показаны некоторые конструкции узлов установок для изучения щелевой коррозии в стендовых условиях. Контроль за развитием шелевой коррозии проводится либо гравиметрически - по убыли массы образцов, либо электрохимически - способами, описанными в 5.1.  [c.165]

Электротермия тесно переплетается с электрохимическими способами превращений веществ и материалов, что необычайно расширяет возможности электрификации технологических операций (например, э.тектролиз огненножидких расплавов, анодно-механическая обработка металлов и т. д.).  [c.117]

С помощью электрохимического способа отпечатков можно получить макроструктуру ряда металлов и сплавов, исключая вольфрам, ванадий и хром, которые пассивируются. Хруска [35] в качестве изолирующей подложки использует стеклянную пластину., На нее кладут металлическую пластину (катод), которая в данном электролите нейтральна, например алюминий при исследовании стального шлифа. На катод кладут фильтровальную бумагу, с помощью которой электролит (раствор соляной кислоты) подводят к образцу. Затем прижимают образец, который соединен с положительным полюсом батареи, поверхностью шлифа к бумаге и прикладывают подобранное напряжение (0,1—6 В). Возникает эффект электрохимического отпечатка, во время которого ионы электролита образуют с ионами испытываемого металла окрашиваемый осадок. А. Глазунов [36] для обнаружения никеля в железных сплавах рекомендует в качестве электролита спиртовый раствор диметилглиоксима и уксусной кислоты. Уже при содержании в сплаве 1% Ni отпечаток вследствие образования диметилглиоксима никеля четко окрашивается в красный цвет.  [c.39]

Серви [17 ] описывает очень простой электрохимический способ макротравления чистого алюминия и алюминия высокой чистоты. Образцы тонко шлифуют без политуры (парафин или скипидарное масло), связывают проводником тока с аустенитной хромоникелевой сталью и наполовину погружают примерно на 5 мин в 15%-ный водный раствор соляной кислоты, затем промывают водой и спиртом и сушат. После этого травят вторую половину образца подобным методом. При этих условиях средняя часть образца протравливается дважды, что оказывается целесообразным, так как часть образца, лежащая на поверхности реактива, взаимодействует с ним медленнее, чем глубоко погруженная. При этом играет роль только соотношение размеров катода и анода. Необходимо избегать слишком сильного травления образца, так как в результате этого ухудшается качество травления.  [c.257]

Состояние поверхности влияет на коррозионную стойкость в таком порядке уменьшения влияния фрезерованная поверхность, шлифованная, механически полированная шлифовальными шкурками и полированная электрохимическим способом. Наиболее стойка электрополированная поверхность. Макроэлементы могут образоваться при соединении двух поверхностей, обработанных разными способами. Поэтому, например, днище, имеющее большую толщину, чем корпус, следует обрабатывать с наружной, а не внутренней стороны (рис. 45).  [c.52]

Положительные результаты стендовых испытаний позволили в 1974—1975 гг. приступить к летным испытаниям турбовентиляторного двигателя, лопатки третьей ступени которого были полностью выполнены из боралюминия. Летные испытания проводились на самолете F-111B. Программа испытаний включала полеты самолета с двумя двигателями, оснащенными лопатками из композиционного материала. Лопатки были изготовлены из алюминиевого сплава 6061, армированного волокнами борсик. Замковая часть лопаток в виде ласточкина хвоста изготовлена из титана. Передняя кромка лопатки имела никель-кобальтовое покрытие, осажденное электрохимическим способом на готовую лопатку, предназначенное для защиты от повреждения посторонними предметами. Лопатки из композиционного материала на 40% легче вентиляторных лопаток, изготовленных из титана. Расчеты показывают, что применение этих лопаток позволит снизить массу двигателей на 15—20% [177].  [c.235]

При обезжнриванни электрохимическим способом поверхность изделий очищается быстрее, чем при обезжиривании химическими способами. Электрохимическое обезжиривание (анодное или катодное) производят в щелочном растворе. Как правило, применяют комбинированную обработку, сначала на катоде, затем на аноде. В качестве электролитов применяют едкий натр, углекислый и фосфорнокислый натрий, в растворы добавляют в качестве эмульгаторов мыло или жидкое стекло. В качестве второго электрода рекомендуется использовать покрытые никелем стальные пластины. Электрохимическое обезжиривание производят в ваннах при напряженигг от 3 до 12 В в зависимости от состава и концентрации электролита, плотиостн тока, температуры. Как и при химической обработке, температура процесса электрохимического обезжиривания составляет 60- 80 С.  [c.124]

I Большое влияние на технологию оказывают также качественные изменения конструкций машин. Особое развитие в машинах получили автоматизированные приводы, а также системы контроля и регулирования. Возросли рабочие параметры машин, а вместе с ними — силовые, скоростные и тепловые нагрузки на детали. При изготовлении современных машин все шире применяют новые, обычно труднообрабатываемые материалы.j усложнением конструкций и увеличением нагрузок на детали проблема качества их изготовления и высокой надежности выпускаемых машин стала одной из основных в технологии машиностроения. Все это потребовало более глубокого изучения и совершенствования сущ,ествующих, а также разработки новых, высокоэффективных методов и процессов обработки. Появились новые виды инструментальных материалов, освоен выпуск и находят все большее применение синтетические сверхтвердые материалы (алмазы и кубический нитрид бора), большое развитие получили методы отделочно-упрочняюш,ей обработки, расширяется применение электрофизических и электрохимических способов обработки.  [c.3]

Опробование хромированных покрытий, полученных электрохимическим способом, показало повышение коррозионной стойкости стали. Однако при этом хрупкость и технологичность листовой стали ухудшается. Например, при изгибе хромированного листа на 180° на его поверхности образуются трещины, распространяющиеся на всю толщину покрытия. Исследования электролитически хромированного листа на микроанализаторе Камека  [c.203]

Электроторможение двигателей - - Виды 8-й Электрофасонно-сталелитейные цехи — Компо новка 14 — 41 Электрофильтры-смолоуловители 11 —429 Электрохимическая обработка металлов 7 — 59 Электрохимический способ резания металлов см. Резание металлов электрохимическое Электрохимическое полирование 7 — 60  [c.360]


Смотреть страницы где упоминается термин Электрохимические способы : [c.578]    [c.65]    [c.91]    [c.56]    [c.284]    [c.118]   
Смотреть главы в:

Материаловедение и технология конструкционных материалов  -> Электрохимические способы

Технология металлов Издание 4  -> Электрохимические способы

Металлургия редких металлов Издание 2  -> Электрохимические способы



ПОИСК



Доводка — Способы электрофизические и электрохимически

Защита стали от коррозионной усталости электрохимическими способами

Классификация способов нанесения электрохимических покрытий

Очистка — Способы электрофизические и электрохимические

Очистка — Способы электрофизические и электрохимические комбинированные

Пределы применимости электрохимических способов защиты

Сварка — Способы электрофизические и электрохимические

Сварка — Способы электрофизические и электрохимические комбинированные

Станки для электрофизических и электрохимических способой обработки

Теоретические основы технологии формообразования электрохимическим способом

Химические и электрохимические способы подготовки поверхности

ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ СПОСОБЫ ОБРАБОТКИ

Электрофизические и электрохимические способы обработки металлов

Электрофизические и электрохимические способы обработки металлов и сплавов

Электрохимические и химические способы декоративной отделки изделий

Электрохимические и электрофизические способы восстановления и обработки деталей

Электрохимические способы восстановления деталей (А. Г. Теплое)

Электрохимические способы обработки металлов

Электрохимические способы очистки сточных вод

Электрохимические способы получения хлора и едкого натра. Синтез соляной кислоты

Электрохимический

Электрохимический способ обработки

Электрохимический способ резания металлов

Электрохимический способ травления



© 2025 Mash-xxl.info Реклама на сайте