Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение поверхностное — Способы

Алюминиевые сплавы благодаря более высоким технологическим и потребительским свойствам, шире применяются в промышленности, чем чистый или технический алюминий. Преимуществами алюминиевых сплавов являются высокие значения прочности (а — до 600 МПа), удельной прочности (ад/р = 21), коррозионной стойкости, тепло- и электропроводности. Алюминиевые сплавы входят в группу легких сплавов (при одинаковой прочности изделия из алюминиевых сплавов в 3 раза легче стальных). Однако они уступают сплавам на железной основе по величине модуля упругости почти в 3 раза, малопригодны для упрочнения поверхностного слоя способами химико-термической обработки, и их твердость и износостойкость ниже, чем стали. Некоторые из них не обладают хорошей свариваемостью.  [c.213]


Основные преимущества алюминиевых сплавов, определяющие область их применения — малая плотность (2,7—3,0 г/см ) при достаточно высоких механических свойствах. Однако они уступают сплавам на железной основе в величине модуля упругости 7 х X 10 кгс/мм у алюминия и 20 10 кгс/мм у сталей и чугунов. Кроме того, алюминиевые сплавы мало пригодны для упрочнения поверхностного слоя способами химико-термической обработки и их твердость и износостойкость ниже, чем стали. Некоторые из них,  [c.430]

Различные способы поверхностного упрочнения детали могут существенно повысить значение коэффициента качества поверхности р (до 1,5—2 и более вместо 0,6—0,8 для деталей без упрочнения). Подробные данные о величине Р в зависимости от способа упрочнения поверхностного слоя (наклепа, цементации, азотирования, поверхностной закалки нагревом т. в. ч. и т. д.) приведены в справочниках.  [c.229]

Значение предела выносливости может быть повышено упрочнением поверхностных слоев материала деталей. Это упрочнение может быть достигнуто двумя способами за счет пластической деформации поверхностных слоев (обкатка роликами, дробеструйная обработка) и за счет их термической и термохимической обработки (поверхностная закалка токами высокой частоты, азотирование). В этих случаях Кг > 1.  [c.341]

Универсальность способа упрочнения. Поверхностной чистовой и упрочняющей обработке можно подвергать стали любого размера и конфигурации, любой поверхностной твердости. Этому способствует разработка ряда новых методов поверхностного упрочнения например таких, как вибрационная объемная обработка, алмазное выглаживание, вибрационное обкатывание.  [c.94]

СПОСОБЫ УПРОЧНЕНИЯ ПОВЕРХНОСТНОГО СЛОЯ  [c.25]

Прогрессивным способом упрочнения поверхности лопаток паровых турбин в настоящее время считается упрочнение электроискровым способом [Л. 5, 37 и 40]. Сущность этого способа упрочнения поверхностного слоя заключается в том, что под действием искрового разряда, возникающего между электродом и лопаткой, происходит оплавление небольших участков электрода и детали и одновременно перенос материала электрода на деталь. Перенесенный материал электрода, смешиваясь с оплавленным материалом лопатки, образует легированный слой на ее поверхности. Этот твердый  [c.79]

Упрочнение поверхностного слоя деталей методом чеканки осуществляется специальным бойком со сферическим наконечником или вибрирующим роликом. Суть этого метода заключается в том, что с помощью специального приспособления механического, пневматического или электромеханического типа боек наносит удары по упрочняемой поверхности. При этом можно получить глубину упрочняемого слоя до 35 мм, а твердость поверхности повышается на 30—50% против исходной заготовки. Применяется этот способ для повышения усталостной прочности деталей, имеющих такие концентраторы напряжений, как галтели, бурты, выточки, отверстия (валы, зубчатые колеса и т. п.), а также сварных швов.  [c.484]


Перечисленные сепарационные устройства не могут, однако, обеспечить полное удаление влаги из проточной части турбины. Поэтому для обеспечения дополнительной эрозионной устойчивости металла принимаются меры по упрочнению поверхностей лопаток хромирование, азотирование, местная закалка кромок лопаток, установка на лопатках накладок из эрозионно стойких материалов, упрочнение поверхностного слоя электроискровым способом и т. п. Наибольшее распространение в турбостроении получило применение накладок из твердых материалов. Эти накладки припаиваются  [c.362]

Процесс ЭМО имеет основные разновидности электромеханическое сглаживание (ЭМС) и электромеханическую высадку металла (ЭМВ). Высадка является основной операцией электромеханического способа восстановления деталей, а поэтому часто под ЭМВ подразумевается сам способ восстановления. Как правило, ЭМС сопровождается упрочнением поверхностного слоя, поэтому в некоторых случаях его называют электромеханическим упрочнением (ЭМУ), а по существу ЭМУ есть следствие ЭМС.  [c.3]

Электромеханический способ (контактной наваркой проволоки) позволяет успешно восстанавливать детали из конструкционных сталей с износом I. .. 1,2 мм. В процессе восстановления происходит упрочнение поверхностного слоя на глубину до 1,5 мм.  [c.188]

При износе неподвижных поверхностей до 0,2 мм эффективно электромеханическое высаживание и выглаживание. Восстановление деталей этим способом не требует дополнительного материала, а при выглаживании поверхности происходит упрочнение поверхностного слоя, повышается износостойкость и усталостная прочность.  [c.367]

Другим технологическим приемом поверхностного упрочнения может служить способ запрессовки в относительно мягкий и пластичный материал заготовки из более твердого материала, вьшолненной в виде клина или конуса. В этом случае при запрессовке можно пол> чить на поверхности более твердой конической (и ш клиновой) дета/ш тонкий градиент повышенной плотности дислокаций глубиной порядка 200—500 А (рис. 53).  [c.78]

Отделку заготовок упрочнением поверхностного слоя производят способом наклепывания поверхности шариками. Шарики, находящиеся во вращающейся обойме, под действием центробежной силы наносят многократные удары по обрабатываемой поверхности (фиг. 15). Скорость вращения наклепывающей обоймы 25 ж/сек, заготовки — 30— 90 м]мин, подача — в пределах 0,04—0,16 мм/об для стали и 0,08 — 0,1 мм об для чугуна.  [c.39]

Пескоструйная, дробеструйная и другие способы обработки применяются для удаления окалины, ржавчины и других дефектов с одновременным упрочнением поверхностного слоя металла. Такая обработка является высокопроизводительным способом очистки стальных и чугунных деталей.  [c.126]

Большинство деталей машин подвержено изгибу и кручению, при которых максимальные напряжения возникают в поверхностных слоях деталей. На поверхности расположены основные источники концентрации напряжений, поэтому разрушение деталей, как правило, начинается с поверхности. Именно прочность поверхностного слоя деталей в ряде случаев имеет определяющее значение. Для повышения конструкционной прочности деталей машин широко применяют поверхностные упрочнения, реализуемые различными способами (см. 1.5).  [c.22]

Механическое упрочнение заключается в упрочнении поверхностных слоев металла пластическим деформированием. Технологически —это простой и в то же время эффективный метод упрочнения рабочих поверхностей деталей из стали, чугуна и различных цветных сплавов. Механическое упрочнение производится различными способами дробеструйным, накаткой гладкими роликами или шариками, чеканкой, ротационно-ударным наклепом шариками, дорнованием и др.  [c.35]

Упрочнение поверхностным наклепом должно быть отнесено к одному из самых эффективных способов снижения веса машин и экономии материалов за счет повышения сроков службы деталей, машин.  [c.217]

К химико-термическим способам упрочнения поверхностей нужно отнести способ жидкостного цианирования. В последнее время в практику внедряется также способ газового цианирования, обладающий рядом преимуществ, из которых главными являются безвредность и большие возможности для механизации, автоматизации и регулирования процесса. Как жидкостное, так и газовое цианирование производятся чаще для получения упрочненного поверхностного слоя небольшой толщины.  [c.218]


Кроме уже рассмотренных способов упрочнения поверхностного слоя изделий проведением закалки т. в. ч. и ХТО, в технике широко используются методы механического упрочнения. Из них наиболее важное значение имеет дробеструйная обработка, при которой поверхность уже полностью механически обработанных деталей обрабатывается дробью. Такая обработка осуществляется с помощью специальных дробеструйных установок, выбрасывающих стальную или чугунную дробь на поверхность обрабатываемой детали. Удары быстро летящей дроби вызывают пластическую деформацию поверхностного слоя металла на глубину от 0,15 до 0,30 мм. При этом поверхностный слой наклепанной стали становится более твердым, 210  [c.210]

Влияние качества поверхности и упрочнения поверхностного слоя. Опыты показывают, что плохая обработка поверхности детали снижает предел выносливости. Влияние качества поверхности связано с изменением микрогеометрии и состоянием металла в поверхностном слое, что в свою очередь зависит от способа механической обработки.  [c.278]

Большой интерес для современного машиностроения представляют опоры трения, выполненные из титана. Однако в литературе пока встречается ограниченное число случаев их успешного практического использования. Это объясняется склонностью титановых сплавов к схватыванию и задиру при трении, к пластическому деформированию и наклепу поверхностного слоя, повышенному износу и переносу титана на поверхность трения контртела. Смазывание жидкими смазочными материалами не улучшает антифрикционные свойства пары трения, а твердые смазки плохо удерживаются на поверхности трения из-за низкой адгезии к титану. Для повышения антифрикционных свойств титана применяют упрочнение его поверхности путем насыщения кислородом (оксидирование), азотом (азотирование), нанесения электролитических покрытий (хромирование, никелирование и др.), электролитического сульфидирования и обработки давлением обкатыванием и виброобкатыванием. Наиболее технологичным и эффективным является способ термического оксидирования, состоящий в нагреве в электрических печах с доступом воздуха при температуре 700—800 °С. Результаты упрочнения титана различными способами химико-термической обработки даны в работе [34], а подробная технология термического оксидирования в [83]. Авторы последней работы рекомендуют материалы подшипников с валом из оксидированного титана и допускаемые параметры трения, полученные на машинах трения МИ-1М, СМЦ-2 и Б-4. Наиболее употребительные из этих материалов приведены в табл. 41, откуда видно, что  [c.156]

В отличие от всех ранее рассмотренных способов обработки давлением принцип работы инструментов ударного действия при чистовой обработке давлением состоит в том, что деформирующие элементы, не находясь в постоянном контакте с обрабатываемой поверхностью, наносят по ней частые удары, причем раскатывающее действие инструмента сочетается с ударным. Благодаря такой усложненной траектории движения деформирующего элемента доля остаточной деформации относительно упругой возрастает, и удается достигнуть высоких классов шероховатости поверхности (9-го класса по ГОСТ 2789—73) и значительного упрочнения поверхностного слоя металла (на 30%). Этот способ обработки применяется за рубежом (США, Англия). Успешно применяется обработка давлением ударным инструментом на деталях из титановых сплавов [16].  [c.16]

Такие условия службы деталей машин приводят к необхо-лости обеспечить высокую прочность поверхностных слоёв достаточной вязкости и упругости сердцевины металла. Су-ующие способы упрочнения поверхностных слоёв деталей и изделий в той или иной степе и удачно разрешают ччу.  [c.3]

Использование технологий модификации первого поколения [165, 166 , основанных на однократном или многократном однотипном внешнем воздействии потоками тепла, массы, ионов и т.д., не всегда обеспечивает требуемые показатели износостойкости материалов при высоких температурах, контактных давлениях и действии агрессивных сред. Поэтому расширение области применения и эффективности методов модификации металлов и сплавов для их использования в экстремальных условиях эксплуатации связано с созданием комбинированных и комплексных способов упрочнения, сочетающих достоинства различных технологических приемов. Существует несколько базовых способов унрочнения, эффективность которых в сочетании с другими методами подтверждена производственной практикой [165, 166]. К таким методам относятся ионно-плазменное напыление, электроэрозионное упрочнение, поверхностное пластическое деформирование, а также термическая обработка. Модификация структуры и свойств материалов при этом происходит за счет сочетания различных механизмов, отличающихся физико-химической природой. На этой основе разрабатываются H(3BE)ie варианты технологий второго поколения, вклю-чаюЕцие двойные, совмещенные и комбинированные нроцессы [166-169], в которых применяются потоки ионов, плазмы и лазерного излучения. К данному направлению относятся обработка нанесенных  [c.261]

Упрочнение поверхностного слоя деталей, подвергающихся абразивному изнашиванию, хорошо достигается с помощью наплавки. Наплавкой можно получить поверхностный слой значительной толщины, что не всегда удается получить другим сиособами (поверхностной закалкой, цементацией, нитроцементацией и т. д.). Особенно выгодно применять наплавку при изготовлении новых деталей больших размеров, так как другими способами упрочнения достичь желаемых результатов почтй невозможно. Наплавка получила широкое применение при реставрации изношенных деталей строительных, дорожных, сельскохозяйственных и других машин. Основная задача, поставленная при наплавке деталей, — получение такой твердости и структуры поверхностного слоя, которые обеспечивали бы наибольшую его износостойкость при данных условиях работы з абразивной среде. Наплавка производится с помощью ацети-лено-кислородного пламени или электрической дуги.  [c.94]


Информация о действительной нагруженности и несущей способности — важный элемент при решении вопросов расчета конструкций, совершенствования их схем и форм, применения поверхностного упрочнения и других способов повышения эксплуатационной надежности и ресурса. Далее рассматриваются некоторые вопросы оценки вероятности неразруше-ния (надежности) в связи с условиями нагружения и несущей способностью элементов конструкций. Отказы по прочности, оцениваемые как возникновение разрушения, повреждение опасными трещинами или недопускаемые деформации, могут возникать в результате однократных или кратных перегрузок как статических, так и динамических или же вследствие наличия дефектов, достаточных для разрушения элементов конструкций при свойственном им уровне эксплуатационной нагруженности. Разрушения такого типа рассматриваются как статические, их вероятностная оценка осуществляется с учетом кратности статического нагружения, статистики возможных статических нагрузок и дисперсии статической прочности во внересурсной постановке. Это, например, уже давно делается в области оценки надежности строительных конструкций, гидротехнических сооружений и ряда других, нагруженных в основном статической нагрузкой.  [c.137]

Одним из эффективных способов упрочнения поверхностного слоя деталей методом пластического деформировапия является обкатывание роликами или шариками с помощью различных нриспо-  [c.483]

Временно удлиняясь в осевом направлении. Основным преимуществом предлагаемого способа холодного редуцирования ступенчатых валов является высокая производительность, почти полностью устраняется последующая механическая обработка, значительно сокращаются технологические отходы, поверхность изделия получается гладкой и чистой. За счет упрочнения поверхностного слоя детали увеличивается ее твердость, происходит переориентация волокон в продольном направлении, что оказывает благоприят]1се влияние на предел прочности стали.  [c.69]

Чйтельного повышения износостойкости. Для приданий поверхностному слою высокой кавитационно-эрозионной стойкости проводилось в опытном порядке упрочнение деталей различными способами поверхностной закалкой, поверхностным легированием, термодиффузионной обработкой и др. При этом было получено, что повышения кавитационной стойкости вдожно достичь (Поверхностной закалкой обычных конструкционных сталей, но этот способ практически не применяется вследствие низкой коррозионной стойкости таких материалов.  [c.31]

Выбор способа химико-термической обработки обусловлен не только требованиями, предъявляемыми к поверхностному слою, но и температурой, прн которой выполняется эта обработка, и теплостойкостью стали. Наиболее универсальными и эффективными методами упрочнения поверхностного слоя инструментов из быстрорежущих сталей является жидкое цианирование, карбонитрация, ионное азотирование и вакуумно-плазменное нанесение износостойких покрытий. Основные способы химико-термической обработки, применяемые в качестве заключительной операции для повышения стойкости инструментов из быстрорежущих сталей, приведены в табл. 18.  [c.613]

Для получения таких характеристик материала применяют различные технологические методы. Гак, напрмер, для повьппения износостойкости, коррозионной стойкости, жаропрочности и т.п. нашли широкое применение различные способы упрочнения поверхностного слоя деталей.  [c.247]

В практике машиностроения эмпирическим путем с использованием простейших закономерностей из области трения разработаны расчетные способы и правила, относящиеся к конструированию элементов пар трения при граничной полужидкостной смазке и трении без смазочного материала, к подбору материалов, способам упрочнения поверхностного слоя металла детали и вопросам смазки, ограничиваясь простейшими представлениями о механизме изнашивания. По аналогии с первыми элементарными представлениями о трении считали, что в процессе изнашивания неровности одной поверхности зацепляются за неровности сопряженной поверхности это приводит при скольжении поверхностей к срезанию и выламыванию неровностей. В результате вырывов образуются новые неровности. Так процесс продолжается с выглаживанием поверхностей трения.  [c.94]

Изучение этой проблемы во время второй мировой войны и исследование эрозии и износа показали некоторую связь между скоростью постепенного роста трещины и различными механическими и металлургическими факторами, включающими термообработку, покрытия, поверхностное упрочнение, концентрацию напряжений, способ изготовления, давление ведущего пояска снаряда и др. (Костинг, 1945 г.).  [c.275]

Поэтому на практике с целью повышения сопротивления усталости широко применяют специальные способы обработки поверхности - поверхностные упрочнения. Поверхностные упрочнения более эффективны, чем объемные, которые часто сопровождаются понижением ударной вязкости и повышением чувствительности к концентрации напряжений. Например, поверхностные упрочне-  [c.35]

В практике поверхностного упрочнения деталей применяют способ душевого (спрейерного) охлаждения, охлаждение погружением в закалочный бак и потоком жидкости.  [c.181]

Наиболее эффективным из этих направлений является предварительное упрочнение поверхностной электрозакалкой, обкаткой роликами или наклепом дробью. Из анодных гальванических покрытий лучшую защиту от коррозионной усталости стальных деталей обеспечивают цинковые покрытия. В речной и морской воде цинковые покрытия практически полностью защищают сталь от коррозионной усталости. Цинковое покрытие, нанесенное другими способами и, в частности, полученное методом распыления (металлизатции), также дает высокую защиту от коррозионной усталости.  [c.172]

Различают упругое и жесткое алмазное выглаживание в зависимости от способа крепления выглаживателя. При упругом выглаживании погрешности формы детали в поперечном и продольном сечениях копируются. При выглаживании с жестким закреплением выглаживателя повышается точность формы обрабатываемой поверхности — отклонение от прямолинейности профиля и отклонение формы профиля в продольном и поперечном сечениях уменьшаются до 15 — 50%. Волнистость поверхности после алмазного выглаживания снижается в 2-4 раза при исходной высоте волн не более 0,003 мм и шаге волнистости не более 3 мм. Размеры деталей после выглаживания изменяются незначительно например, диаметр на 0,001—0,003 мм. При выглаживании поверхностей, точность которых соответствует 6 — 7-му квалитету, назначая допуск, необходимо учесть изменение размеров. Упрочнение поверхностного слоя составляет до 80%. Глубина упрочненного слоя и шероховатость поверхности зависят от силы выглаживания Ру, радиуса рабочей части выглаживателя и режимов обработки (табл. 5). Наибольшее упрочнение достигается при Ру = = 100 - 200 Н.  [c.795]

Наряду с конструктивными методами снижения нолп1нальных и местных напряжений существует обширный арсенал технологических способов упрочнения элементов машин (табл. 12). Наиболее распространенной является закалка деталей машин. Она обеспечивает общее упрочнение деталей, повышение их износостойкости, надежности прессовых соединений. В частности, ее разновидность — сорбитизацию — процесс с образованием структуры сорбита, эффективно используют для упрочнения крановых колес. В части увеличения усталостной прочности и износостойкости эффективны также поверхностная закалка, химико-термическая обработка, пластическое деформирование (наклеп) поверхностей и термомеханическая обработка (ТМО). Два первых процесса имеют ряд общих особенностей а) упрочнению подвергается неглубокий поверхностный слой 1материала деталей, а глубинные слон не претерпевают существенных превращений, благодаря чему металл сердцевины остается вязким, что обеспечивает высокую несущую способность детали при ударных нагрузках б) в упрочненном поверхностном слое возникают значительные сжимающие остаточные напряжения, что ослабляет влияние концентрации напряжений от внешней нагрузки и повышает сопротивление детали усталостному разрушению.  [c.51]


Изложены сведения о современных технологиях и оборудовании для упрочнения поверхностным пластическим деформированием (ППД). Отражено влияние ППД на надежность деталей, на технологическую наследственность. Приведены методические материалы по исследованиям поверхностнсго слоя после ППД и испытаниям образцов для определения эффективности упрочнения. Описаны способы и средства контроля технологии ППД и качества поверхностного слоя. Даны рекомендации по выбору технологических процессов ППД и их экономической оценке.  [c.75]

Значительно повышается износостойкость и сопротивление задирам при различных способах механического и термохимического упрочнения поверхностного слоя направляющих закалке, цементации, азотировании, цианировании, диффузионном хромировании, сульфидировании, фосфатировании, наплавке износостойкими материалами, электроискровой обработке, тонком строгании с последующим уплотнением -поверхности путем обкатки гладкими роликами и др. Сущность термохимических процессов упрочнения сводится в основном к насыщению поверхностного слоя различными элементами — углеродом, азотом, хромом и др Эти элементы, переходя в поверхностный слой, придают ему твердость, износоустойчивость, антикоррозийность.  [c.201]

Поверхностный аклеп повышает в значительной степени зы-носливосгь в условиях действия коррозионной среды [47] в результате образования на поверх-иости детали сжимающих напряжений. Наиболее радикальным способом повышения выносливости в условиях действия коррозионной среды, кроме надлежащей защиты. поверхности является, видимо, применение нержавею1щих высокопрочных сталей, упрочненных поверхностным наклепом.  [c.42]

Эффективными способами упрочнения поверхностного слоя являются дробеструйная обработка, позволяющая прорабагывать стальные детали на глубину до 0,7 мм, и обкатка поверхности роликами на глубину до 15 мм. При этом происходит наклеп поверхности детали, позволяющий повысить ее усталостную прочность, не меняя материала и режим термической обработки. Наклепу подвергают готовые детали, прошедшие механическую и термическую обработку.  [c.168]


Смотреть страницы где упоминается термин Упрочнение поверхностное — Способы : [c.5]    [c.78]    [c.378]    [c.44]    [c.3]    [c.234]   
Детали машин Том 1 (1968) -- [ c.0 ]



ПОИСК



Способы поверхностного упрочнения деталей

Способы упрочнения поверхностного слоя

Упрочнение

Упрочнение поверхностное

Упрочнение поверхностное — Способы применение



© 2025 Mash-xxl.info Реклама на сайте