Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластмассы композиционные

Пластмассы — композиционные материалы, основой которых являются полимеры, определяющие главные свойства и выполняющие роль связующего, соединяющего все компоненты материала в монолит. Остальные компоненты — наполнители, пластификаторы, стабилизаторы и другие — при введении в неполярные полимеры снижают их электроизоляционные свойства. Поэтому пластмассы на основе таких полимеров — отличных диэлектриков — состоят практически только из связующего. В табл. 23.12 приведены свойства термопластичных полимерных органических диэлектриков и материалов на их основе, в табл. 23.13 — свойства термореактивных пластмасс, а в табл. 23.14 — слоистых пластиков с листовым (рулонным) наполнителем.  [c.557]


Термореактивные пластмассы композиционные 53—88  [c.541]

Основу неметаллических материалов составляют синтетические полимерные материалы, пластические массы (пластмассы), композиционные материалы с полимерной матрицей, получаемые переработкой синтетических и природных полимеров с добавками наполнителей.  [c.144]

Теперь эта старая техника контроля по анализу звучания возрождается применительно к самым современным материалам — пластмассам, композиционным материалам и материалам, армированным волокном, разумеется с привлечением современных электронных вспомогательных средств.  [c.16]

С технологической точки зрения удобно использовать отдельные пластмассы, находящиеся в жидком состоянии при нормальной температуре. В первую очередь это относится к производству крупногабаритных деталей из композиционных пластиков. Пластики состоят из связующей смолы, наполнителя и в некоторых случаях отвердителя и ускорителя отверждения. В качестве связующего предпочтительнее использовать полиэфирные и эпоксидные смолы. Эти смолы характеризуются высокой адгезией к наполнителю и способностью отверждаться при нормальной температуре за счет добавления к ним отвердителей и ускорителей отверждения (перекиси бензола, нафтената, кобальта, полиэтиленполиамина и др.).  [c.433]

Предел прочности при статическом изгибе а чистых смол и композиционных пластмасс (кроме винипласта и некоторых др.), как и  [c.344]

Внутреннее трение в твердых телах используется в основном для снижения уровня шумов при ударных и вибрационных нагрузках путем замены металлических материалов пластмассами и композиционными материалами снижения напряжений в конструкциях, возникающих при колебаниях вблизи резонанс .  [c.230]

По характеру наполнителя пластмассы подразделяют на с л о ж-ные (со сложным наполнителем), композиционные (с наполнителем в виде порошка или волокон) и без наполнителя (литые).  [c.326]

Из всего многообразия пластмасс наибольшее применение в машиностроении нашли сложные пластмассы (текстолит, гетинакс, асботекстолит, древеснослоистые пластики, стеклотекстолит и др.), композиционные пластмассы (текстолит из крошки, волокнит и др.), термопластические материалы (органическое стекло — плексиглас, винипласт, фторопласты, полиамидные смолы и др.).  [c.326]

Материалами для изготовления звездочек служит чугун (серый, ковкий, антифрикционный, высокопрочный) — для звездочек с большим числом зубьев и для цепей сельхозмашин стали цементуемые — при динамических нагрузках стали закаливаемые— при работе без резких толчков и ударов. Кроме того, для изготовления звездочек применяют пластмассы и композиционные материалы.  [c.195]


Таблица 3.51. Значения пределов выносливости композиционных материалов и пластмасс при знакопеременном изгибе на базе 10 циклов Таблица 3.51. Значения <a href="/info/1473">пределов выносливости</a> композиционных материалов и пластмасс при знакопеременном изгибе на базе 10 циклов
Конструкционные материалы. В качество материала машиностроительных конструкций используются в основном металлы и их сплавы, а также различные неорганические и органические материалы (полимеры, пластмассы, волокна, керамика и др.). В последнее время нашли применение композиционные материалы, состоящие из высокопрочных нитей стекла, бора, углерода и связующего (полимеров и металлов). В строительных конструкциях используются бетон (смесь крупных и мелких каменных частиц, скрепленных цементом), железобетон (бетон, усиленный стальными стерж-нями), кирпич, дерево и другие материалы.  [c.11]

В электроизоляционной технике применяется большое количество композиционных материалов, В одних случаях это определяется требованиями механической прочности (волокнистая основа), в других — удешевлением стоимости и приданием необходимых свойств (наполни гели в пластмассах и резинах), в третьих — использованием пенных отходов (слюдяные материалы и т. д.).  [c.57]

Прессование в пресс-формах и между обогреваемыми плитами. Этот вид прессования композиционных материалов может осуществляться на обычных гидравлических прессах различной мощности, применяемых для обработки металлов давлением, в порошковой металлургии, в производстве пластмасс. Необходимым условием, обеспечивающим пригодность пресса для процесса диффузионной сварки, является возможность поддерживания заданного давления на нем в течение длительного времени. Прессование изделий из композиционных материалов на таких прессах производится в специальных пресс-формах, нагреваемых тем или иным способом до нужной температуры. Диффузионная сварка может осуществляться на воздухе, в вакууме и в защитной атмосфере. В зависимости от этого пресс, на котором ее проводят, может быть оснащен камерой для создания вакуума или необходимой атмосферы.  [c.127]

Стекловолокно- стало одним из компонентов многих композиционных материалов. Возьмем, к примеру, синтетические полимеры. Они отличаются низким удельным весом, устойчивостью против коррозии и, к сожалению,. невысокой прочностью, которая более чем в 10 раз уступает прочности мягкой стали. Как повысить их прочность с тем, чтобы использовать их в строительстве и в производстве. Армировать их Но металлы не могут быть арматурой пластмасс — такая арматура для них дорога, тяжела, неудобна, да и коэффициенты теплового расширения у пластмасс и металлов различны.  [c.100]

Когда удалось соединить пластмассы со стекловолокном, был получен совершенно новый композиционный материал, названный стеклопластиком. Он быстро нашел дорогу в авиационную, автомобильную, судостроительную и другие отрасли промышленности.  [c.100]

Для повышения износостойкости узлов трения в химическом машиностроении применяются композиционные пластмассы (с бронзой) для поршневых колец компрессоров, подшипников скольжения и др., а также возбуждающие ИП смазочные материалы в узлах трения сталь—бронза. Указанные способы предотвращения износа недостаточно эффективны при коррозионно-механическом изнашивании трущихся соединений, наблюдающемся при трении в насосах, перекачивающих кислоты и щелочи, в аппаратуре с перемешивающими устройствами и другом химическом оборудовании. Трущиеся детали изготавливаются из коррозионно-стойких сталей, а смазывание их производится водой либо исходным сырьем для получения химического продукта, большей 176  [c.176]

При.меняемые в настоящее время пластмассы в зависимости от технологии изготовления и химического состава могут быть разделены на композиционные пластики, слоистые пластики, литые смолы, пластики на основе эфиров целлюлозы, прочие пластические материалы. В каждую из этих групп входит ряд пластиков.  [c.325]

В пятом томе Неметаллические материалы дана краткая характеристика неметаллических материалов изложены общие принципы их выбора при конструировании деталей машин приведены сведения о физико-механических и технологических свойствах конструкционных, композиционных, оптически прозрачных, газонаполненных пластмасс, литьевых, прессованных, пленочных, листовых термопластов  [c.8]


КОМПОЗИЦИОННЫЕ ТЕРМОРЕАКТИВНЫЕ ПЛАСТМАССЫ  [c.53]

Комплексные числа 1 (1-я)—117 Композиции асфальтопековые 4 — 304 Композиционные пластмассы — см. Пластмассы композиционные Компоненты 1 (1-я)—379 6 — 166 Компрессионные холодильные машины — см.  [c.105]

В отличие от известных справочников конструктора в настоящем издании приведены не только справочные данные, но изложены методы расчета и конструирования основных узлов машин — исполнительных органов, приводов, предач и несущих конструкций. Изложены основные свойства различных конструкционных материалов — сталей, чугунов, цветных металлов, пластмасс, композиционных материалов.  [c.2]

Использование металлической арматуры значительно расширяет область применения деталей из композиционных материалов (особенно на основе пластмасс и резины). Например, в электро- и радиопромышленности прессованием и литьем под давлением получают электрические разъемники, колодки, панели и т. д. Это позволяет резко (в 10—100 раз) сократить трудоемкость получения таких изделий по сравнению с аналогичными конструкциями, собранными из отдельных элементов.  [c.440]

ГОСТы с перспективными требованиями к техническому уровню и качеству продукции должны относиться к стандартам вида Общие технические требования (ГОСТ ОТТ) . В ГОСТах ОТТ первая ступень технического уровня и качества продукц]1и должна соответствовать требованиям основного потребителя (заказчика) вторая — высшему мировому уровню третья должна сама устанавливать высший мировой уровень. Сроки введения в стандарт и выпуска продукции второй и третьей степеней технического уровня и качества устанавливают на основе сроков обновления продукции. При проведении таких работ должны быть исполгзованы мировые достижения в области новых материалов (композиционных материалов, пластмасс, покрытий), а также в области применения лазерных лучей, вибрационной н ультразвуковой технологии и др.  [c.40]

Промышленный вычислительный томограф ВТ-200 максимальный диаметр контролируемого изделия до 200 мм материалы изделий —пластмассы, резина, древесина, композиционные типа эластомеров, углерод-углеродистые структуры, легкие сплавы и металлы типа бериллия максимальные разрешение по ЛКО 0,5% матрица изображения 256X256 элементов толщина контролируемого слоя 10 мм источник излучения УРП 120/33-Т, с томографической трубкой 4БДМ12--140 фокусом 1,5X10 мм, max 140 кВ, атях 33 мА, oUa=0,5% принцип стабилизации — по первичной цепи с преобразованием частоты и сглаживанием. Матрица детекторов состоит из 8 сцинтилляторов с ФЭУ-92, в качестве детектора используется sJ(Na).  [c.471]

УД-22УМ Эхо-метод, теневой 200 400 600 800 Изделия из пластмасс и полимерных композиционных материалов толщиной до 200 мм 6  [c.296]

В настоящее время накоплен большой опыт по испытанию композиционных материалов. Созданы различные разрушающие [78] и неразрушающие 46] методы определения механических свойств. При корректной постановке эксперимента и иравилышм выборе геометрических размеров образцов разрушающие м неразрушающие методы позволяют получать весьма близкие ио значениям механические характеристики на некоторых тниах анизотропных материалов 46]. Необоснованный выбор схемы нагружения и параметров образца может привести к несопоставимым значениям характеристик, полученных на одних и тех же материалах одними и темн же разрушающими методами 112, 26, 84, 93]. Это объясняется прежде всего тем, что не все разрушающие методы достаточно изучены . многие методы разработаны для изучения свойств изотропных материалов, позже перенесены на исследования пластмасс, а затем распространены на композиционные материалы. Естественно, они не учитывают особенностей структуры и свойств композиционных материалов, что приводит к результатам, которые невозможно повторить, а часто соио-ставнть даже при таких видах нагружения, как испытание на растяжение, сжатие п изгиб. Испытание на сдвиг композиционных материалов изучено мало [78, 119].  [c.26]

Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Например, сталь подвергают окраске, чтобы увеличить стойкость к разрушительному действию коррозии. Стволы первых артиллерийских орудий изготовляли из дерева, а затем дерево скрепляли с латунью, чтобы повысить их стойкость к воздействию внутреннего давления. Прочность бетона повышается при использовании армируюш их стержней. Возникновение промышленности, производящей пластмассы, относят к 1868 г., когда Хайдтом был открыт целлулоид. Вслед за этим в 1909 г. Бикландом была получена фенолформальдегидная смола, в 1938 г. появился найлон. В 1942 г. впервые были изготовлены полиэфиры и полиэтилен. В 1947 г. появились эпоксидные смолы и полимеры на основе сополимера акрилонитрила, бутадиена и стирола [3]. В начале 50-х годов для защиты от коррозии стали использовать термореактивные пластмассы. В это же время началось впервые изготовление коррозионно-стойкого оборудования. Судостроительная промышленность явилась первым крупным потребителем и изготовителем армированных пластиков. Армированные пластики не получили бы такого широкого распространения, которое они имеют в настоящее время, не будь заинтересованности судостроительной промышленности. Долгое время отсутствовала информация об этих материалах, однако, в конечном счете, основные необходимые сведения об армированных пластиках как конструкционных материалах были получены от самих судостроителей.  [c.310]

Отечественной промышленностью и многими зарубежными фирмами создано большое количество различных видов композиционных материалов. Данные материалы могут быть как естественного, так и искусственного происхождения. К естественным композиционным материалам относят древесину, некоторые горные породы и минералы, к искусственным — различные виды полимеров и пластмасс (стеклопластики, асбопластики, углепластики, текстолиты, гетинакс, армированная резина и др.), а также материалы на основе облагороженной древесины (фанера, древеснослоистые пластики, древесностружечные и древесноволокнистые плиты), металлические и металлополимерные.  [c.5]


В результате анализа и оценки эффективности указанных методов для полимерных композиционных материалов было установлено, что наиболее эффективными при неразрушающем контроле пластмасс являются импульсный ультразвуковой, микро-радиоволповой и инфракрасный оптический методы [36].  [c.104]

Аобестовые волокна широко и пflльэyюt я в йрО-изводстве электрооборудования для самолетов. Кабелями с изоляцией из асбестового волокна и силиконовое каучука с оплеткой из стекловолокна с силиконовым покрытием снабжены американские самолеты Комета . Удачный пример использования в самолетостроении армированных асбестом пластмасс—сбрасываемые топливные баки, которые применяются на американском реактивном самолете Канберра . Наиболее эффективными считаются тормозные колодки из композиционного материала на основе асбеста.  [c.116]

Вопросами внедрения пластмасс в конструкции различных железнодорожных вагонов, совместно с ВНИИВ, занимаются Ленинградский им. Егорова, Брянский машиностроительный. Рижский, Алтайский, Крюковский и другие вагоностроительные заводы. К основным достижениям в этой области относятся внедрение неметаллических композиционных тормозных колодок взамен чугунных, что позволяет эксплуатировать вагоны со скоростями 120—160 км/час и заметно сократить тормозной путь применение для внутренней отделки пассажирских вагонов рулонного и профильного поливинилхлорида, повинола, пенополиуретана и губчатой латексной резины изготовление из капрона, ударопрочного полистирола, полиэтилена, слоистых пластиков различной арматуры, диванов, окон и других элементов кузова внедрение стеклопластиков для полов туалетных помещений взамен метлахских плиток применение в пассажирских и грузовых вагонах в большом объеме древесно-волокнистых плит.  [c.221]

Механические свойства пластмасс изменяются в довольно значительных пределах. Например, предел прочности при растяжении колеблется для композиционных пластиков от 175 до 550 кг1см , для слоистых — от 650 до 1000 кг/см", для литых смол и пластиков на основе эфиров целлюлозы — от 300 до 500 кг1см , для фибр — от 250 до 950 кг/см . Теплостойкость пластиков также весьма различна и для разных марок колеблется в пределах от 40 до 200° (по Мартенсу).  [c.326]

В пятом томе дана краткая характеристика неметаллических материалов, изложены общие принципы их выбора при конструировании деталей машин, приведены справочные сведения о физико-механических и технологических свойствах конструкционных, композиционных, оптически прозрачных, газонаполненных пластмасс, литьевых, прессованных, пленочных, листовых термопластов. В этом же томе даны справочные сведения о лакокрасочных, углеродистых, резиновых, древесных, бумажных, текстильных, асбестовых, силикатных материалах, клеях, коже и ее заменителях, промышленном стекле, ситаллах, стекло-эмали, каменном литье, стекловолокне, стеклоткани, пеностекле, фарфоре, глазури, вяжущих составах, обжиговой керамике, тугоплавких соединениях. Табл. 427, рис. 100, библ. 105 назв.  [c.4]


Смотреть страницы где упоминается термин Пластмассы композиционные : [c.230]    [c.457]    [c.343]    [c.418]    [c.428]    [c.393]    [c.25]    [c.43]    [c.437]    [c.111]    [c.27]    [c.53]    [c.53]    [c.55]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.72 ]

Химия и радиоматериалы (1970) -- [ c.61 ]



ПОИСК



Композиционные термореактивные пластмассы (Попов В. А., Попова Л. В., Щеголева

Композиционные, наполненные пластмассы

Пластмассы древесно-слоистые — Гнуть композиционные — Диэлектрические

Пластмассы древеснослоистые композиционные

Пластмассы и полимерные композиционные материалы

Пластмассы — Недостатки композиционные

Термореактивные пластмассы композиционные

Технология получения изделий из пластмасс и полимерных композиционных материалов



© 2025 Mash-xxl.info Реклама на сайте