Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Простейшие задачи теории ползучести

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]


Однако существенные трудности, связанные с определением ядер кратно-интегральных представлений в этих функционалах, заставляют искать иные пути исследования определяющих уравнений и на этой основе построить более простую нелинейную теорию ползучести неоднородно-стареющих тел, не претендующую на абсолютную точность, но могущую оказаться эффективной при решении прикладных задач.  [c.23]

Первая группа — это операторные принципы, реализация которых сводится к вычислению функций интегральных операторов. Вторая группа — это принципы соответствия, позволяющие решение задачи теории ползучести свести к преобразованию решения упругомгновенной задачи известным оператором или оператором, который строится сравнительно просто.  [c.277]

Рассмотрим постановку задачи теорий ползучести и приведем простейшие примеры их решений.  [c.90]

В заключение уместно отметить, что методы, широко использованные выше при решении простейших задач теории пластичности, легко переносятся также на весьма важную для практики теорию установившейся ползучести.  [c.132]

Однако в настоящей главе внимание читателя привлекается к относительно простым по идее, но сравнительно общим, популярным и доступным при расчете любого изделия формам приближенных методов в теории упругости, которые в той или иной степени могут найти успешное применение и в задачах теории пластичности и ползучести, и в задачах реологии.  [c.58]

При повышенных температурах возникает явление ползучести материала, которое, как известно, приводит с течением времени изменению напряженного состояния тела от начального упругого к состоянию установившейся ползучести. Точное решение конкретных задач с учетом ползучести связано с большими математическими трудностями (сложная структура уравнений ползучести и большого разброса данных). Поэтому при решении рассматриваемой задачи будем исходить из более простых приближенных формулировок основных уравнений теории ползучести.  [c.21]

Исследование волновых процессов в вязкоупругих телах является весьма сложной проблемой, что связано, главным образом, со сложностью математической постановки динамических задач вязкоупругости. Если по теории ползучести опубликовано много журнальных статей и монографий, то в области динамики вязкоупругих сред получено весьма ограниченное число частных результатов при решении простейших задач [7, 10, 18, 51. ..64].  [c.3]


Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]

Приведены решения ряда задач горячего формоизменения по простейшим теориям ползучести. Исследованы осадка полосы в условиях плоской деформации, а также осадка сплошного и полого цилиндров, продольная прокатка листа, раздача тонкостенных цилиндрических и сферических оболочек, толстостенных цилиндров и сфер, прессование полосы в условиях плоской деформации и прессование круглого прутка, изгиб листа, деформирование длинной узкой прямоугольной мембраны, круглой мембраны и тонкостенных цилиндрических труб в жестких конических матрицах. В некоторых из перечисленных случаях рассмотрены оценки возможности локализации деформаций и поврежденности в заготовках.  [c.7]

Для описания процессов ползучести металлов в настоящее время большее применение нашли простейшие теории ползучести. Однако для решения ряда задач расчетов на ползучесть металлических элементов конструкций, и в частности для исследования процессов обработки металлов давлением [39, 103, 122], используются и наследственные теории.  [c.20]

Применение простейших теорий в задачах обработки металлов позволяет получить достоверные результаты с меньшей затратой труда и времени. Поэтому в дальнейшем будут использованы простейшие теории ползучести, которых в настоящее время существует три старения, течения и упрочнения. Эти названия в значительной мере являются условными. Как известно [80], теория старения хуже согласуется с результатами экспериментальных исследований, чем теории течения и упрочнения, и плохо отражает процесс ползучести при резко изменяющихся нагрузках. В частности, она не описывает ступенчатого нагружения. Поэтому ниже будут рассмотрены только две простейших теории течения и упрочнения, а также теория структурных параметров, частным  [c.20]

Наиболее просто задача решается с помощью теории старения. Расчет строится на основе изохронных кривых ползучести, для построения которых используют кривые ползучести, полученные экспериментальным путем при постоянных- напряжениях а и температуре Т. Существенно, что изохронные кривые имеют такой же вид, что и кривые деформирования, неравномерно сдвинутые в сторону больших деформаций. Это позволяет для решения задачи использовать зависимости деформационной теории пластичности.  [c.34]

Относительно просто решается задача линейной наследственной ползучести, когда решение соответствуюш.ей задачи теории упругости представимо в виде произведения рациональной функции упругих констант на функцию от координат.  [c.98]


Изгиб стержней по теории упрочнения. Даже простейшая задача о неустановившейся ползучести стержня прямоугольного поперечного сечения при чистом изгибе не имеет точного решения. Н. Н. Щетинин исследовал эту задачу с помощью уравнения ползучести вида  [c.139]

В нагруженном теле в начальный момент времени возникают упругие или упруго-пластические деформации. С течением времени напряженное состояние тела вследствие ползучести будет изменяться, стремясь (при постоянных внешних нагрузках) к состоянию установившейся ползучести. Точное решение задач неустановившейся ползучести по теории течения связано с большими математическими трудностями даже в простых случаях. Вследствие большого разброса экспериментальных данных, характерного для явления ползучести, следует отдать предпочтение простым приближенным методам.  [c.104]

Решение задач неустановившейся ползучести по теории старения более просто, чем по теории течения. В силу приведенной ранее аналогии с задачами теории упруго-пластических деформаций (см. стр. 94— 95) необходимо провести ряд расчетов упруго-пластического состояния при фиксированных значениях времени.  [c.106]

Рассмотрим применение теории течения в расчетах на неустановившуюся ползучесть на примере простейшей задачи чистого изгиба бруса прямоугольного - поперечного сечения (рис. 14.2). По-  [c.346]

Известно, что ценность любой теории определяется прежде всего ее соответствием опытным данным. Некоторые сопоставления были сделаны в первых двух главах, но они относились лишь к процессам быстрого деформирования в условиях, когда реономные свойства материалов проявляются слабо. Как известно, эти свойства при повторно-переменном нагружении экспериментально изучены недостаточно. Развитие структурной модели, которое привело к формулированию относительно простого принципа подобия в форме уравнений состояния (3.30)—(3.32), в совокупности с закономерностями циклической ползучести обеспечивает новые возможности для постановки задач экспериментальных исследований, делает эксперимент целенаправленным. Качественная определенность закономерностей, которые можно прогнозировать, используя указанный принцип, позволяет подобрать наиболее контрастные программы испытаний для проверки узловых моментов теории.  [c.76]

Число подэлементов N выбирается в зависимости от требуемой точности аппроксимации диаграммы деформирования с учетом общей трудоемкости задачи. Минимальное значение N — 1 отвечает простейшему расчету по теории идеальной пластичности и установившейся ползучести. Значение N — 2 позволяет в первом приближении  [c.235]

Первый из этих знаменитых инженеров опубликовал результаты испытаний проволоки, примененной в постройке первого французского висячего моста ). Исследования Ламе имели своей задачей изучение механических свойств русского железа ), между тем как Вика выступил, сторонником испытаний на длительное загружение, которые могли бы согласно его взглядам гарантировать материал от последствий ползучести, явления, которое впервые было замечено им ). Вика изучал также сопротивление различных материалов скалыванию и непосредственным опытом показал, что в коротких балках влияние поперечной силы на прочность приобретает весьма большое значение. Так как он работал именно с короткими балками и пользовался такими материалами, как естественный камень или кирпич, которые не следуют закону Гука, он имел дело с условиями, при которых пользоваться простой теорией изгиба недопустимо. Ценность его работ в теоретическом отношении оказалась поэтому невысокой, если не считать того, что они привлекли внимание к важной роли поперечных сил в балках.  [c.104]

Методам решения задач ползучести на основе линейных наследственных уравнений будет посвящен специальный параграф, а в заключение этого параграфа рассмотрим простейшие примеры решения задач ползучести на основе теорий старения и течения. Эти задачи были решены Л. М. Качановым.  [c.91]

Даже при использовании простой зависимости (1.16) задача о релаксации турбинного диска оказывается очень сложной. Так как при релаксации важны только малые деформации ползучести (меньше мгновенных упругих), то для этого диапазона деформаций можно применить теорию упрочнения в виде  [c.10]

Уравнения теории установившейся ползучести и уравнения теории старения, по существу, тождественны с уравнениями деформационной теории пластичности. Разница состоит лишь в том, что в теории установившейся ползучести деформации заменены через скорости деформации, а в уравнениях теории старения время фигурирует как параметр. Методы, применяемые для решения задач по этим двум теориям, по существу аналогичны. Для установившейся ползучести обычно выбирается некоторая простая аналитическая аппроксимация функции V з) = Ф ( ), например V = или V = ехр (о/Ое), где еп, Оп, п, 8е, — константы.  [c.133]

Задача построения теории неустановившейся ползучести оболочки в принципе решается наиболее просто в том случае, когда исходные  [c.116]

Общие результаты теории ползучести нео дно родно-стар еющих тел, полученные в 1,2, справедливы для произвольных ядер вида К — К (Ь, т) - или соответственно К = КН - р (а ), г -Ь р (а ), х]. Однако для приложений этой теории существенное значение имеет выбор ядер такого типа, чтобы они, с одной стороны, достаточно точно воспроизводили основные свойства стареющих материалов в наиболее важных случаях их нагружения, а с другой стороны, приводили бы к постановке краевых задач, допускающих эффективное рещение. Поэтому ниже остановимся лищь на тех неразностных ядрах специального типа, которые позволяют наиболее просто применить теорию ползучести неодно-родно-стареющих тел к решению прикладных задач. Разумеется, выбор ядер для стареющих материалов эквивалентен выбору вида функций для модулей мгновенных деформаций (х) и О (т) и для мер ползучести С 1, т) и со ( , т), ибо, например.  [c.60]


Многие современные конструкционные материалы, используемые в машиностроении, проявляют при ползучести такие малоизученные эффекты, как анизотропию в исходном сост оянии и связанную с упрочнением, неодинаковость сопротивления при растяжении и сжатии, накопление повреждаемости и др. [69, 79, 139—141, 177, 195]. Теория ползучести таких материалов развита недостаточно. В связи с этим в литературе предлагаются различные новые модели сред, в той или иной степени учитывающие реальные свойства ползучести [37, 56, 57, 71, 117, 130, 178, 193—196, 214, 215]. Ниже рассматриваются возможные варианты уравнений состояния инкрементального типа для анизотропных материалов. Использование теории ползучести деформационного типа при исследовании НДС элементов машиностроительных конструкций оправдано только в тех случаях, когда в теле реализуется нагружение, близкое к простому. В процессе контактных взаимодействий элементов машин даже при неизменяющихся внешних воздействиях часть конструкции, а иногда и вся конструкция могут подвергаться сложному нагружению. Поэтому при решении контактных задач теории ползучести необходимо применение физически более обоснованных теорий инкрементального типа [91, 116, 131, 162, 221].  [c.104]

Теория ползучести как раздел механики деформируемото тела сформировалась сравнительно недавно. Первые исследования в этой области относятся к 20-м годам XX в. Их общий характер определяется тем, что проблема ползучести представляла большую важность для энергомашиностроения и инженеры были вынуждены искать простые и быстро ведущие к цели методы решения практических задач. В соз Дании теории ползучести большая роль принадлежит тем авторам, которые внесли существенный вклад в создание современной теории плас-  [c.7]

Прогресс в теории неупругого деформирования, отмечаемый в последние два-три десятилетия, в существенной мере связан с актуальностью проблемы малоциклового разрушения для многих теплонапряженных и высоконагруженных конструкций современной техники. Необходимость расчета полей напряжений и деформаций при изменяющихся нагрузках и температурах потребовала переоценки простейших классических теорий пластичности и ползучести с точки зрения возможности отражения ими множества деформационных эффектов, которые при однократном нагружении не проявляются или признаются малосущественными. Оказалось, что разработка теории неупругого деформирования, удовлетворяющей новым требованиям, связана с немалыми принципиальными трудностями значительные затруднения возникали также при реализации поцикловых расчетов кинетики деформирования в связи с исключительно большой их трудоемкостью. На определенном этапе это предопределило преимущества приближенного подхода к оценке несущей способности конструкций, опирающегося на представления и методы предельного упругопластического анализа. Развитие, которое получил этот подход за последние десятилетия [16, 20], обеспечило ему довольно высокую эффективность при решении прикладных задач. С другой стороны, полученные в рамках теории приспособляемости (и ее дальнейшего обобщения — теории стационарных циклических состояний) четкие представления о различных типах поведения конструкции способствовали более глубокому пониманию многих характерных особенностей повторно-переменного деформирования.  [c.7]

В заклю-чение отметим, что для исследования концентрации напряжений в элементах конструкций на практике широко используют теоретические и экспериментальные методы. Среди теоретических методов в настоящее время наиболее распространены численные методы решения на ЭВМ задач теории упругости, пластичности и ползучести (среди них вариационно-разностный метод и метод конечных элементов, см. гл. 26). Они позволяют достаточно точно исследовать коицентрацию аврдаений в телах произвольной формы (плоских, осесимметричных и пространственных) при простом и. сложном нагружении.  [c.564]

Теория ползучести как раздел механики деформируемого твердого тела сформировалась сравнительно недавно. Первые исследования в этой области относятся к двадцатым-тридцатым годам общий характер их определяется тем, что проблема ползучести представляла большую важность для энергомашиностроения и инженеры были вынуждены искать простые и быстро ведущие к цели методы решения практических задач. В создании основ теории ползучести большая роль принадлежала тем авторам, которые внесли существенный вклад в формирование современной теории пластичности, отсюда общность многих идей и подходов. В нашей стране первые работы по механической теории ползучести принадлежат Н. М. Беляеву (1943), К. Д. Миртову (1946), к концу сороковых годов относятся первые исследования Л. М. Качанова, Н. Н. Малинина, Ю. Н. Работнова.  [c.122]

При очень большом числе циклов нагоужения (порядка 10 -1 (г), характерном для транспортных ГТУ (судовых, авиационных), и температурах, при которых ползучесть металла в пределах полотна диска не играет существенной роли, представляется наиболее обоснованным требование практически полного отсутствия пластических деформаций во всех циклах (за исключением разве некоторого, относительно небольшого, количества первых циклов). Этому требованию проще всего удовлетворить при проектировании с использованием расчетов, основанных на теории приспособляемости. Поэтому такой подход в последнее время кладется в основу нормирования запасов прочности для циклических режимов (с учетом температурных напряжений), соответствующих наиболее часто встречающимся в эксплуатации маневрам ГТУ. При этом следует отметить, что в тех случаях, когда в пределах полотна диска имеют место значительные концентраторы напряжений (на ободе, у отверстий для крепления и т.д.), обычный его упругий расчет (лежащий в основе расчета дисков по теории приспособляемости) необходимо дополнять расчетом его по схеме плоской задачи или пространственной осесимметричной задачи теории упругости (например, методом конечных элементов) с тем, чтобы при нахождении условий приспособляемости учесть фактические значения напряжений в районе концентраторов. В тех случаях, когда диск ГТД работает при таких температурах, при которых уже нельзя пренебречь ползучестью его материала, расчет диска по теории приспособляемости (даже если в рамках этого расчета вместо предела текучести используется какая-либо другая характеристика материала, связанная с ползучестью, например предел ползучести сгл на соответствующей базе и циклический предел упругости в условиях ползучести Sт), представляется недостаточным и его желательно дополнять расчетом стабилизированного цикла [71] и деформаций ползучести, накапливаемых в каждом таком цикле. Применительно к переменным режимам аварийного типа Например, пуск из холодного состояния с последующим мгновенным или просто очень быстрым набором перегрузочной мощности), в процессе которых могут возникать относительно большие пластические деформации (и, может быть, ползучесть), но зато известно, что число таких циклов нагружения за весь срок службы двигателя невелико (например, несколько десятков) описанный выше подход уже не является целесообразным. Для оценки запасов прочности применительно к таким режимам (определяемых как отношение числа циклов до разрушения или появления макроскопической трещины к фактическому числу циклов) необходим расчет, как минимум, параметров стабилизированного цикла или полный расчет кинетики нагружения - цикл за циклом, а также знание соответствующих критериев разрушения, учитывающих накопление повреждений от необратимых деформаций любого типа. аяя  [c.483]


Сложное нагружение. Для решения задач термопластичности и ползучести при непростом нагружении крупногабаритных деталей турбин ТЭС н АЭС, содержащих конструктивные концентраторы напряжений, разработан алгоритм теории течения с анизотропным упрочнением, отличающийся тем, что обычные ограничения на размер шага в итеращ10ином процессе значительно ослаблены. Это достигается при определенных ограничениях, накладываемых на ход зависимостей, описывающих сложный путь нагружения [19]. В расчетах принимают, что эти зависимости аппроксимируются по этапам непростого монотонного нагружения, при котором для любой точки тела главные оси дапряжений могут в процессе нагружения изменять свою ориентацию произвольным образом. При этом каждая компонента девиатора деформаций изменяется по линейной зависимости от одного параметра, но на коэффициенты этих зависимостей ограничений не накладывается. Каждая компонента девиатора изменяется независимо от другой и, следовательно, их отношения изменяются без каких-либо специальных ограничений. При монотонном нагружении в отличие от простого предшествующий этап Багружения не определяет направление движения на последующем этапе. Постулированное для монотонного нагружения линейное движение изображающей точки в пространстве De не предопределяет линейного движения в пространстве девиаторов напряжений D . Характер движений этой точки в пространстве Dg определен соответствующими аналитическими выражениями.  [c.41]

Заметим также, что деформации пластичности и ползучести включаются в уравненЕШ упругости как дополнительные. При этом расчет упруго-пластических задач производится по теории течения или деформационной теории пластичности в приращениях. Учет деформаций полз> чести может быть проведен по теориям старения, течения и упрочнения, причем теория старения наиболее пригодна для описания простого или близкого к нему на- ружения.  [c.84]

ОС НОРшая задача механики деформируемого твердого тела — описание процессов деформирования с учетом экспериментальных данных, определяющие соотношения которых могли бы быть использованы при решении конкретных технических задач. Поэтому развитие теории механики деформируемого твердого тела идет по пути постепенного усложнения и уточнения определяющих соотношений по мере накопления экспериментальных данных. В качестве основной исходной характеристики обычно принимают деформацию. При упругом деформировании (простейший вид) определяющие уравнения связи между напряжениями и деформациями можно записать, в виде конечных соотношений, при пластическом деформиро Банин — в приращениях или дифференциалах. В последнем случае процесс нагружения-деформирования зависит только от последовательности наложения элементарных процессов (нагрузки, разгрузки, повторной нагрузки и т. п,) и не зависит от промежутков времени, в течение которых эти процессы происходят, т. е. окончательный результат не зависит от масштаба времени. В более общем случае деформирования деформации могут зависеть от масштаба времени, например, изменение деформаций во времени при постоянном напряжении. Поэтому принято полные деформации разделять на мгновенные, или упругопластические, и длительные деформации ползучести.  [c.3]

Некоторые приложения теории вязкоупругости. Многочисленные приложения теории вязкоупругости относятся к стержням, пластинам и оболочкам, при этом, кроме общих соотношений вязкоупругости, исследовались и существенно более простые модели типа модели Фойхта или Максвелла. Так, в задачах устойчивости при ползучести основной качественный эффект связан с геометрической нелинейностью, вследствие которой возникает возможность упругого хлопка при рассмотрении отдельных примеров применение линейных соотношений вязкоупругости вместо нелинейного закона ползучести существенно упрощает технику, не меняя.  [c.153]

Полной физ. теории ]1. кристаллов еще не существует, рассмотрены лишь частные задачи (вычисление предела текучести, теории упрочнения у рапецеи-трироваиных кубич. кристаллов, ползучести и т. д.). Теоретич. ощ нка напряжения Сто- необходимого для относит, сдвига двух соседних атомных плоскостей в бездефектном кристалле, даст в простейшем случае 0,1 = С/2я, где О — модуль сдвига, а при учете деталей потенциального рельефа в гранецептрирован-ных кубич. и гексагональных кристаллах с плотной упаковкой Сто = С/ЗО. Это в 10 —1(1 раз превышает нанряжение, при к-ром па опыте начинается пластич. сдвиг. Близкие к Оо значения прочности на сдвиг наблюдаются только в бездислокационных кристаллах, а также в кристаллах с очень большой плотностью дефектов, в к-рых дислокации практически неподвижны (см. табл.).  [c.42]

В работе В. И. Розенблюма [93] аппарат теории тонких стержней Кирхгоффа — Клебша был использован для расчета на установившуюся ползучесть турбинных диафрагм. Диафрагма, представляющая собой полукольцевую пластину, опертую по внешнему контуру и нагруженную равномерным давлением, рассчитана как изогнутый и скрученный кривой стержень, поперечное сечение которого — вытянутый прямоугольник. Решение, выполненное методом Ритца, позволило дать простую оценку максимальной скорости прогиба, но не дало возможности вычислить напряжения. Этот вопрос решен в работе П. Я. Богуславского [8]. Рассматриваемая задача решена по гипотезе старения в формулировке Ю. Н. Работнова. В решении использован метод последовательных приближений. Результаты расчета сопоставлены с данными опытов.  [c.261]

Простой способ представления характеристик ползучести для фиксированного времени кривыми зависимости напряжения от деформации, получившими название изохронных кривых, широко )аспространен в практике инженерных расчетов на ползучесть [17]. асчет на ползучесть с помощью изохронных кривых сводится к решению задач деформационной теории пластичности (см. гл. 4). При плавно изменяющихся напряжениях возможность такого представления и отсутствие необходимости его усложнения подтверждены экспери.ментально. Типичные изохронные кривые, используемые при расчете на ползучесть,- представлены на рис. 1.4.  [c.8]


Смотреть страницы где упоминается термин Простейшие задачи теории ползучести : [c.5]    [c.565]    [c.630]    [c.6]    [c.276]    [c.81]    [c.27]   
Смотреть главы в:

Основы теории упругости и пластичности Учебное пособие для студентов вузов  -> Простейшие задачи теории ползучести



ПОИСК



Основы теории пластичности и ползучести Простейшие задачи теории пластичности

Постановка задачи теории ползучести и простейшие примеры

Простейшие задачи

Теории ползучести простейшие

Теория ползучести



© 2025 Mash-xxl.info Реклама на сайте