Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Возможности и точность методов исследования

Возможности и точность методов исследования  [c.383]

Вновь разработанные рецептуры теплозащитных материалов сначала проходят сравнительные (отборочные) испытания. Параметры среды и метод испытаний подбирают таким образом, чтобы выявить наиболее важные свойства материала, характеризующие его поведение и возможности в заданных условиях. Сравнительные испытания проводят при постоянных параметрах набегающего потока на одном режиме работы установки. При исследованиях такого типа необходимо учитывать воспроизводимость условий испытаний, надежность и точность методов контроля параметров высокотемпературной среды, достаточность объема получаемой информации для того, чтобы с заданной точностью проводить сравнение материалов. По результатам сравнительных испытаний отбирают наиболее эффективные материалы, которые подлежат дальнейшему изучению.  [c.309]


Изучение состояния поляризации можно провести как в отраженном, так и в проходящем свете. В случае металлов преломленная волна практически поглощается в очень тонком поверхностном слое. Поэтому в данном случае целесообразно использовать измерения в отраженном свете. Наоборот, при слабом отражении от диэлектриков основным методом исследования является эллипсометрия в проходящем свете. В тех случаях, когда возможны соответствующие измерения в отраженном и проходящем свете, эллипсометрия в отраженном свете удачно дополняет эллипсометрию в преломленном свете, и наоборот. Следует отметить, что эллипсометрия позволяет не только определять оптические константы чистых поверхностей материалов, она позволяет также, исходя из непосредственно измеряемых параметров эллипса поляризации, определить характеристики тонких поверхностных пленок, возникающих вследствие адсорбции и т. д., например толщину (вплоть до долей ангстрема) и показатель преломления (с точностью до 10" ) поверХНОСТНОГО слоя.  [c.64]

ИМИ процесса пользовались методами, основанными на анализе проб жидкости, отбираемых на выходе из образца пористой среды или вдоль его длины. Этот метод, испытанный в отечественной и зарубежной практике лабораторного экспериментирования, был принят и в наших исследованиях. Ввиду того, что визуальное контролирование процесса вытеснения смешивающихся жидкостей не представлялось возможным, так как исключалась возможность замера объемных расходов смешивающихся фаз фильтрационного потока, а также с целью повышения точности производимых измерений нами был использован метод, основанный на анализе отбираемых проб жидкости при выходе ее из образца в процессе вытеснения с последующим определением  [c.35]

Для определения и изучения механических свойств материалов в малых объемах перспективными и порой единственно возможными являются методы исследования твердости, микротвердости, испытания малых образцов на растяжение. Условно эти испытания могут быть отнесены к микромеханическим методам исследования свойств материалов [121, 128, 166, 205]. Развитие методов изучения прочности тугоплавких металлов при температурах, в 2—3 раза превышающих освоенный в испытательной технике уровень (до 1300 К), явилось весьма сложной задачей, решение которой потребовало преодоления больших конструкторских и методических трудностей. Было осуществлено создание комплекса новых специальных высокотемпературных установок повышенной точности, исключающих влияние на испытываемые образцы вредных побочных явлений испарения и окисления материалов, трения в направляющих и в уплотнениях микромашин, нагрева силоизмерительных устройств, вибрации частей установок и здания, а также многих других факторов.  [c.4]


Степень точности информации, получаемой с помощью установок для тепловой микроскопии, в значительной мере определяет возможности использования методов и средств совмещенных исследований структуры и свойств материалов не только при выполнении работ исследовательского характера, но и при контроле качества продукции металлургического производства, машиностроения и приборостроения.  [c.102]

Существующие аналитические методы расчета прецизионных пневматических виброизолирующих опор [1—3] основаны, как правило, на применении линейных моделей. Использование возможностей ЭЦВМ позволяет дополнить аналитические методы исследованием динамики опор на основе обобщенных нелинейных математических моделей, что обеспечивает большую точность [4] и сокращает объем экспериментальных исследований.  [c.128]

При этом важно отметить, что чем больше при прочих равных условиях (одинаковая продолжительность и интенсивность сдувания и другие условия опыта) крутизна пленки, тем меньше градиент скорости О, а следовательно, согласно формуле Ньютона, тем больше ц. Таким образом, по крутизне пленки, определяемой расстоянием соседних полос интерференции, можно судить о пропорциональной ей вязкости слоев жидкости. Однако существует возможность во много раз повысить точность измерения толщины пленки на разных участках, если применить более тонкие методы исследования отраженного от пленки света.  [c.199]

Более строгие и точные результаты при исследовании напряженно-деформированного состояния упруго-неоднородных тел можно получить с помощью теории упругости. Несмотря на трудности чисто математического порядка, использование аппарата теории упругости позволяет дать решение целого ряда практически важных задач, не поддающихся решению методами сопротивления материалов. Кроме того, анализ этих решений дает возможность установить точность различных приближенных способов расчета, в том числе и основанных на гипотезе плоских сечений.  [c.32]

В настоящее время в нелинейной теории точности разработаны общие методы определения ошибок положения (перемещения), скорости и ускорения для плоских н пространственных механизмов с низшими и плоских механизмов с высшими кинематическими парами [1 ]. В основу этих методов положены возможности ЭЦВМ, позволяющие проводить исследование точности механизмов без преобразования к явному виду уравнений, описывающих их поведение. Иными словами, при применении аппарата нелинейной теории точности не требуется приводить конечные или обыкновенные дифференциальные уравнения к удобному для анализа виду, как это, например, делалось при исследовании точности механизмов в рамках линейной теории [2, 5, 6].  [c.196]

Проблема уменьшения износа трущихся деталей — одна из важнейших в машиностроении. Существует ряд методов определения износа деталей путем их взвешивания или измерения, однако они связаны с остановкой машин. Химический и магнитный методы нозволяют производить исследование износа без остановки машин, но их чувствительность и точность не всегда достаточны. Радиоактивные изотопы открывают новые широкие возможности прежде всего именно в исследовании износа и в нахождении путей повышения стойкости деталей машин, в частности различных валов, направляющих опор для вращательного и поступательного движения в станках, поршней и колец двигателей, зубчатых передач и др. Метод радиоактивных изотонов позволяет решить эту важнейшую проблему машиностроения гораздо точнее, быстрее и экономичнее.  [c.3]

Для исследования основных механизмов многошпиндельного автомата [44, 45] в качестве стенда использовался серийно выпускаемый автомат с электромеханическим приводом. Было выбрано несколько задач исследования. Определялись основные параметры механизмов с целью уточнения методики проведения эксперимента и изучения динамических нагрузок на привод. Исследовались взаимодействия основных механизмов автомата и муфт, с помощью которых изменяется скорость вращения распределительного вала (РВ). Подробно было проведено исследование механизма поворота, фиксации и подъема шпиндельного блока при различных углах поворота блока и скоростях вращения распределительного вала для изучения динамических нагрузок на механизм и их влияние на точность положения зафиксированного блока в опорах. Было рассмотрено влияние регулировки отдельных механизмов на динамические нагрузки и циклограмму. Проведена проверка возможности использования кинетостатических методов расчета механизмов поворота и динамических параметров для диагностирования механизмов автомата, а также исследование влияния места расположения и размеров ведущего зубчатого колеса механизма поворота [32].  [c.59]


Проведенное исследование позволяет установить тенденции качественного и количественного изменения растворенных органических веществ очищенной городской сточной воды в процессе ее дистилляции (в пределах возможностей метода разделения и точности анализов).  [c.217]

Достоинствами комбинированного метода являются гораздо большие экстраполяционные возможности за пределы опытных данных и большая точность по сравнению с чисто экспериментальными путями исследования. Отмеченные достоинства комбинированного метода имеют место при условии, если упрощенная теоретическая схема процесса достаточно полно отражает основную закономерность протекания сложного теплообмена в условиях рассматриваемой задачи. Тогда экспериментальные отклонения от этой схемы (находимые из опыта как поправки) будут иметь второстепенный характер. В связи с этим при использовании комбинированного метода исследования сложных процессов следует руководствоваться двумя принципами. Во-первых, необходимо выбрать аппроксимирующую упрощенную схему по возможности ближе к реальным условиям с тем, что сохранить основные связи существующей искомой закономерности и не исказить физическую сущность процесса. Во-вторых, математическое описание выбранной схемы должно допускать возможность аналитического решения. Поэтому показателями удачного выбора упрощенной схемы может служить относительная простота ее математической модели и сравнительно слабое влияние поправочных функций, находимых из сопоставления аналитического решения этой математической модели с результатами эксперимента.  [c.424]

Одним из важнейших апробированных физических методов исследования структуры дисперсной фазы является метод экспериментального изучения характеристик рассеянного света. Тщательные исследования, проведенные в этой области [Л. 36, 40—44], дают возможность связать измеряемые свойства рассеянного света со структурой светорассеивающих сред. По информации, которую несет рассеянный частицами свет, можно с достаточной степенью точности находить размеры частиц и их концентрацию.  [c.212]

Вероятностные и статистические методы построения моделей технологических процессов находятся в тесной взаимосвязи друг с другом, так как теоретические модели требуют экспериментальной проверки, а экспериментальные исследований не могут быть поставлены без соответствующих теоретических предпосылок. На основе теоретического анализа можно также осмыслить и оценить полученные экспериментальные данные и выдвинуть более правильные гипотезы о границах возможной идеализации, допустимой при построении теоретических моделей. Таким образом, вероятностные и статистические методы не должны противопоставляться друг другу. Наоборот, они приобретают силу при их совместном применении, становясь в этом случае мощным средством для познания физической сущности технологических процессов и выявления резервов их точности и производительности.  [c.255]

Исследование точности и стабильности контроля [7—9, 12]. Точность контроля деталей в РАЛ в значительной степени является функцией погрешностей изготовления и измерения. Известные законы распределения размеров деталей и погрешностей метода измерения определяют вероятное количество некондиционной продукции в партии годных деталей и возможное количество ложного брака в группе забракованных  [c.24]

Кроме сведений о широко применяемых методах исследования задач теплопроводности, в монографии уделено большое внимание разработанным автором методам и вопросам их реализации на различного рода электрических моделях. При этом предлагаемые методы и устройства следует рассматривать не только как аппарат для непосредственного решения нелинейной задачи, но и как средство оценки влияния нелинейностей и определения пределов, в которых возможно линейное решение. Эта область приложения приобретает особое значение при исследовании температурных полей таких сложных объектов, каковыми являются элементы паровых и газовых турбин, так как появляется возможность решения основной теплофизической задачи в линейной постановке после оценки влияния нелинейностей с помощью предлагаемых методов. Кроме того, если решения, полученные на-электрических моделях, не удовлетворяют заданной точности, то их можно рассматривать в качестве первого приближения для расчетов на ЭЦВМ.  [c.4]

Изложенные в п. 13 методы исследования случайных процессов в нелинейных системах являются приближенными, поэтому нуждаются в оценке точности полученных результатов. Пример 1 в п. 13 был решен приближенными методами, и результаты решения сравнивались с точным решением, полученным с использованием Марковских процессов, что дало возможность оценить точность приближенных решений. Такая возможность оценки точности приближенного решения нелинейных задач имеется очень редко, поэтому всегда при получении приближенных решений, использующих методы упрощения исходных уравнений (статистическая линеаризация, разложение в ряды и т. д.), остается сомнение в эквивалентности решения реальному процессу. О недостатках методов статистической линеаризации и мо-ментных функций говорилось в п. 12. Рассмотрим трудности, возникающие при исследовании нелинейных статистических задач на следующем примере.  [c.97]

Развитие интерференционного метода измерения длины открыло возможность повысить точность воспроизведения метра, определив его как длину, равную некоторому числу длин световой волны. Исследования с целью выбора наиболее яркой, узкой и точно воспроизводимой спектральной линии позволили в 1960 г. XI Генеральной конференции по мерам и весам принять новое определение метра, приведенное выше. Тем самым метр снова стали воспроизводить с помощью естественного эталона.  [c.26]


В свою очередь эти обстоятельства позволили широко раздвинуть рамки наших знаний о распределении напряжений в инженерных конструкциях. Развитие экспериментальных методов анализа напряжений стимулировалось разнообразными мотивами. Прежде всего, большую роль здесь сыграло то обстоятельство, что теоретические формулы сопротивления материалов и теории упругости выводились в предположении, что материалы однородны, идеально упруги и следуют закону Гука. В действительности же технические материалы иногда весьма далеко отступают от совершенной однородности и идеальной упругости, в связи с чем проверка формул, выведенных для идеализированных материалов, приобретает большое практическое значение. Лишь в простейших случаях теория способна дать полное решение задачи о распределении напряжений. Большей же частью инженерам приходится довольствоваться приближенными решениями, точность которых нуждается в проверке непосредственными испытаниями. Основное требование, предъявляемое в настоящее время к инженерному проекту,—это наивысшая возможная экономия в весе материала, что может быть достигнуто повышением допускаемых напряжений и снижением коэффициентов запаса. Но то и другое можно признать безопасным лишь в том случае, если проектирующий инженер располагает точными данными о свойствах материалов и строгой методикой исследования напряжений. Обязательной предпосылкой такого исследования является детальное знание условий службы сооружения, в особенности всего, что касается характера воздействия на него внешних сил. Действующие на сооружение силы известны часто лишь приблизительно, так что для пополнения наших знаний в этой области приходится обращаться к исследованию напряжений в существующих сооружениях в условиях их эксплуатации. Из всех этих соображений явствует то значение, которое приобретают ныне успехи экспериментального исследования напряжений ).  [c.459]

При применении метода ГИУ к задачам механики разрушения остается ряд нерешенных вопросов, в особенности в случае трехмерных трещин. Две главные задачи состоят в моделировании компланарных поверхностей трещины и создании в трехмерном случае метода решения задач о трещинах при помощи функции Грина. Другим перспективным направлением исследований представляется объединение возможностей метода ГИУ и метода конечных элементов для моделирования сложных крупногабаритных конструкций,.Наконец, необходимо изучить общий вопрос о точности решения в зависимости от порядка аппроксимации граничных значений, в особенности для задач механики разрушения. Любые существенные усовершенствования метода, повышающие его эффективность, могут значительно увеличить возможности для применения метода ГИУ в обычных инженерных расчетах конструкций, имеющих трещины.  [c.66]

Проведено рентгенографическое исследование порошков рутила, полученных при окислении ВТ-1Д в чистом Oj и в газовой смеси, состоящей из 0,8% и 99,2"о N,- Расчет проводился по линиям 313, 521, 213. При точности метода 0,002 А разницы в значениях параметров, связанной с возможным участием азота в процессе образования окалины, не обнаружено.  [c.130]

Статистический метод исследования на базе кривых распределения позволяет объективно оценить точность различных способов механической обработки. Данный метод универсален. Его можно применить для исследования точности выполнения заготовок, сборочных операций, операций технического контроля, а также для некоторых операций (балансировка, холодная правка). В равной степени его можно применить для оценки качества изделий по различным показателям. Единая методика, простота и несложные вычисления обусловили широкое применение этого метода на практике. Он особенно удобен (а часто и незаменим) в тех случаях, когда механизм явлений не изучен. Его можно применять и для проверки результатов, полученных аналитическими расчетами. К недостаткам данного метода относится то, что он не вскрывает сущность физических явлений и факторов, влияющих на точность обработки, а также то, что на его базе не выявляются конкретные возможности повышения точности. Метод фиксирует результаты законченного этапа, т. е. обращен в прошлое . Полученные ранее значения сг не г югут быть использованы, если в условиях выполнения данной операции произошли изменения (например, режима резания, способа установки заготовки и т. п.). В этом случае необходимо определить новое значение а.  [c.32]

Исследованию распространения оптического излучения в турбулентной атмосфере уделяется значительное внимание в связи с широким применением лазеров в оптических системах, предназначенных для работы в земной атмосфере. Если атмосферные газы и аэрозоли вызывают преимущественно энергетическое ослабление оптического излучения, то турбулентные пульсации показателя преломления приводят к случайному перераспределению энергии в оптических пучках, определяя таким образом технические возможности лазерных систем. Действительно, точность геодезических лазерных приборов, пространственное и временное разрешение лазерных локаторов, возможности и точность определения параметров среды дистанционными лазерными методами можно оценить только с учетом флуктуаций поля оптических пучков. Вызываемые турбулентностью случайные изменения показателя преломления могут суш,ественно ограничивать технические характеристики оптических систем, так что в ряде случаев сама целесообразность их применения должна определяться на основе оперативного прогнозирования флуктуаций поля лазерного излучения с учетом сложившейся в атмосфере оптико-метеороло-гической ситуации [46] (ссылки даны по списку цитируемой литературы ко второй главе).  [c.5]

Рентгенографические методы анализа широко используются для изучения структуры, состава и свойств различных материалов. Широкому распространению рентгенофафического анализа способствовали его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто недоступных другим методам исследований. Вследствие высокой проникающей способности рентгеновских лучей для осуществления анализа не требуется создание вакуума. С помощью рентгенографического анализа исследуют качественный и количественный состав материалов (рентгенофазовый анализ), тонкую структуру кристаллических веществ - форму, размер и тип элементарной ячейки, симметрию кристалла, координаты атомов в пространстве, степень совершенства кристаллов и наличие в них микронапряжений, наличие и величину остаточных макронапряжений в материале, размер мозаичных блоков, тип твердых растворов, текстуру веп ес1в, плотность, коэффициент термического расширения, толидину покрытий и т.д.  [c.158]

Сущность весового метода заключается в оценке износа путем взвешивания деталей до и после изнашивания. Этот метод рекомендуется применять при стандартных испытаниях покрытий [159, 163—166 [. Оп дает возможность оценить интегральный износ, так как при взвешивании находится суммарная потеря массы со всей площади рабочей поверхности трения. Точность метода зависит от массы образца или детали, поэтому взвешиванию подвергаются преимущественно небольшие изделия. Весовой метод предполагает тщательную очистку всего объекта от частиц износа, масла, нагара и т. д. Для оценки износа пористых покрытий, работающих со смазкой, этот метод может оказаться вообще неприемлемым из-за наличия вГпорах масла и продуктов изнашивания, удаление которых весьма затруднительно. При испытании образцов, резко отличающихся по химическому составу и пористости, необходимо учитывать различия в плотности покрытий, и результаты исследований представлять в относительных единицах в сравнении с эталонным образцом.  [c.97]


Возросший интерес к поляризационным методам исследования выдвигает повышенные требования к их точности, быстродействию и наглядности отображения информации. В связи с этим в последнее время отдается предпочтение разработке автоматических систем, обеспечивающих большую чувствительность измерений благодаря применению различной модуляционной техники, например ячеек Фарадея [253] и Керра [240], позволяющих дополнительно поворачивать плоскость поляризации на несколько градусов. При этом параметры эллипса поляризации наблюдаются непосредственно на экране ЭЛТ или записываются на ленту самописца или магнитную пленку для дальнейшей обработки. Следует отметить, что современные отечественные и зарубежные, ручные и автоматические эллиисометры основаны на классических принципах исследования поляризации света. Однако имеются сведения о возможности построения лазерных эллипсометров, основанных на принципе интерференции света [45, 102, 197].  [c.202]

Весьма перспективным для изучения трибологаческих процессов является разработка и изучение математических моделей процесса трения, износа и смазки твердых тел (деталей, механизмов и машин) с помощью электронно-вычислительных машин. Для формулировки математических моделей могут быть использованы уравнения, характеризующие процесс течения смазки, контактную и общую деформацию трущихся тел и всего узла трения, тепловые процессы - образование и распространение теплоты, а также явления, связанные с физическими, химическими и механическими фактороми, определяющие в главном процесс поверхностного разрушения деталей при трении. Известно, что широко распространенные методы классической математики часто используют принцип суперпозиции и пригодны в основном для решения линейных задач. Характерная особенность теоретических задач в области трибологии деталей машин заключается в их существенной нелинейности. В качестве примера можно сослаться на систему уравнений, указанных в данной главе. Совместное решение системы нелинейных уравнений представляет значительную математическую трудность, а если учесть также возможность возникновения качественных (и количественных) скачков исследуемых характеристик, например при возникновении процесса заедания при малых и средних скоростях, характеризующихся резким увеличением коэффициента трения скольжения и скорости изнашивания тел, то становятся ясными сложность и необходимость детального исследования адекватных математических моделей с помощью численных методов. В результате получается приближенное решение сложной научно-технической задачи с необходимой точностью.  [c.169]

Любое исследование с помощью теоретико-вероятностных и статистических методов предусматривает обработку некоторого количества статистичеоких данных. Для машиностроительной продукции эти данные представляются результатами измерения конкретных Параметров точности. Известно, что разброс случайных величин зависит от стабильности то чностных параметров обрабатывающих и измерительных средств. Для упрощения дальнейших вычислений при изучении точности технологического оборудования необходимо обеспечить устойчивость показаний и по возможности точность измерительных приборов. Наиболее приемлемым способом является измерение в лабораторных условиях, но если это невозможно, то точность можно измерять и на рабочих местах, периодически проверяя показания прибора по эталону. Квалификация контролера должна быть достаточно высокой, чем обеспечивается исключение влияния субъективных ошибок на результаты измерений. Некоторые специалисты [34] рекомендуют использовать измерительные средства - с погрешностью показаний А ал 0,1 бг, где hi — допуск измеряемого параметра при большей погрешности измерения необходимо учиты вать ее при обработке результатов. Порядок комплектации выборки зависит от ее назначения. В условиях массового производства легко получить требуемый объем и заданное количество выборок.,  [c.59]

Исследования математической модели в вычислительном плане показали, что решение системы балансовых уравнений — одна из основных составляющих алгоритма решения задачи. Возможность прямого расчета отдельных подсистем полной системы уравнений с применением итерационного метода Зейделя [21 позволяет организовать лишь два больших цикла — цикл по балансу генераторного вала и цикл по балансу тепла. Кроме того, существует несколько малых циклов, таких, как циклы по определению температур на выходе из компрессора и парогазовой турбины и по определению температур парогаза между пакетами регенератора. Количество итераций и время счета описываемой части математической модели зависят от величины погрешности решения и точности начального приближения. При использовании] для] расчетов ЭЦВМ  [c.138]

Гамма-резонансный (ГР) спектр представляет собой зависимость интенсивности у-кван-тов, излученных источником и прошедших через поглотитель или рассеянных им, от относительной скорости источника или поглотителя. Основное достоинство получающегося спектра — чрезвычайно узкая линия поглощения (рассеяния). Отношение ширины линии к энергии излучаемого у-кванта, т. е. разрешающая способность, обычно составляет 10 — что в абсолютных величинах соответствует точности определения энергии 10 — 10 эВ. Возможность измерения столь малых энергетических сдвигов оказалась весьма полезной для изучения различных сверхтонких взаимодействий в твердых телах. Благодаря этому применение эффекта Мессбауэра положило начало развитию метода исследования твердых тел —ядерной гамма-резонансной (иногда просто гамма-резонансной) спектроскопии, метода ЯГРС или ГРС [3, 4].  [c.161]

Метод исследования свойств веществ, когда физический эксперимент и математическое моделирование применяются совместно, дополняя друг друга, может быть назван расчетно-экспериментальным. Анализ совместной деятельности экспериментаторов и специалистов по математическому моделированию поведения вещества в разнообразных условиях и процессах позволяет сформулировать основные положения этого метода следующим образом. Свойства вещества исследуются экспериментально с максимально возможной точностью в доступной для этого области изменения его характеристик. Все полученные данные делятся на две группы информационную и контрольную. Цервая используется для выбора численных значений параметров математической модели. Контрольная группа данных применяется уже для верификации математической модели. При этом расчеты проводятся при фиксированных значениях параметров модели, выбранных на первом этапе. Если результаты расчетов удовлетворительно совпадают с опытными данными второй группы, модель рекомендуется для использования. В противном случае она нуждается в совершенствовании.  [c.5]

Вместе с тем специфические особенности, присущие контактному методу определения неровностей поверхности, затрудняют оценку его метрологических возможностей и в первую очередь количественное определение погрешностей измерения. Задача установления точности метода измерения являлась основной в исследованиях, относящихся к этой области, но до настоящего времени не было единого решения этого вопроса. В результате исследований, изложенных в главах VI, VIII и X, выявился ряд предложений, относящихся как к установлению погрешностей щуповых приборов, так и к достижению ограниченного единства измерений.  [c.8]

Синтезу оптимальных приемных устройств оптического диапазона и оценке их эффективности посвящен ряд работ. Так, в 141] Получен алгоритм действия оптического приемника при приеме дискретномодулированных по интенсивности сигналов найдено, что оптимальными сигналами с точки зрения максимума отношения сигнал/шум являются сигналы с активной и пассивной паузой. В (44] с некоторыми модификациями решались те же вопросы, что и в [41]. В [21] рассматривался вопрос оптимального разрешения некогерентных сигналов оптического диапазона эта работа тесно связана с обнаружением точечных источников на фоне местности. Недостатком указанных работ является то, что статистические распределения сигнальных и шумовых фотонов задаются априорно, без строгого обоснования. Этого недостатка лишены работы [65, 90], где с квантовых позиций осуществляется подход к решению задач обнаружения и приема сигналов этот подход позволяет определить потенциальные возможности обнаружения и выделения лазерных сигналов, осуществить синтез систем, реализующих эти возможности, найти предельную чувствительность и точность приборов. Методам оценки эффективности и оптимизации локационных систем посвящены работы [23, 24]. Анализ дискретных информационных систем оптического диапазона проводится в [42, 43, 45, 46, 47, 62, 67, 99, 101, 102, 103, 105, 106, 107], где также приведены оценки эффективности этих систем. Однако основополагающими работами в области статистической теории обнаружения и приема оптических сигналов следует считать работы К. Хелстрома [19, 20], где строго с квантовых позиций рассмотрен широкий круг интересных вопросов, введен оператор обнаружения и найден ряд аналитических выражений, позволяющих найти алгоритм обработки сигналов и произвести оценку эффективности систем. Отметим, что указанные работы носят характер журнальных статей и перечень их довольно скромен. Совершенно очевидно, что исследования в области создания статистической теории должны быть значительно расширены.  [c.14]


В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]

Удобства, присуш,ие МГЭ при исследовании трехмерного напряженного состояния в инженерных задачах, привели к появлению обширной литературы, демонстрируюш,ей полезность этого метода в обычном анализе. Для громоздких тел это, по-видимому, единственный в настояш,ее время надежный метод, позволяюш,ий получать подробные результаты за разумную плату. Кроме того, МГЭ дает возможность пользоваться теорией сингулярных решений, представлений граничной геометрии, анизотропии и т. д. перед выполнением численных расчетов. В этом параграфе представлены несколько решенных задач и дана оценка точности полученных результатов.  [c.180]

Для получения информации о рельефе поверхности используются различного вида щуповые приборы (профилометры, профилографы), оптические интерферометры, туннельные и сканирующие атомно-силовые микроскопы и т. д. Они позволяют с той или иной степенью точности воссоздать микрорельеф поверхности на заданном ее элементе, а также определить некоторые её характеристики (осреднённый высотный и шаговый параметры, средний наклон и радиус кривизны в вершине неровности, среднее количество неровностей на единицу площади и т.д.). Развитие измерительной техники приводит к изменению представлений о топографии, что стимулирует возникновение новых математических моделей, используемых для описания топографии поверхности. С другой стороны, при создании приборов для исследования топографии в конструкцию и программное обеспечение закладывается возможность измерения и расчёта характеристик, наиболее широко используемых при моделировании. Обзор экспериментальных методов исследования топографии поверхностей содержится в [59, 235].  [c.11]

В этой главе будут рассмотрены экспериментальные методы, а также результаты исследования различных нелинейных эффектов. Понятие волн конечной амплитуды с точки зрения экспериментатора несколько условно, так как возможность наблюдения различных нелинейных эффектов определяется не только интенсивностью звуковых волн, но также чувствительностью и точностью измерительной аппаратуры. Например, рассматриваемые ниже методы исследования искажения ультразвуковых волн в жидкостях с успехом применялись для волн, интенсивность которых с точки арения обычных представлений в достаточной мере мала. В этой главе, предполагая, что читатель знаком с методами акустических измерений в линейной акустике, приведенными в целом ряде руководств, мы остановимся только на методах, являющихся в некоторой мере споцифическимп при исследовании нелинейных эффектов.  [c.139]


Смотреть страницы где упоминается термин Возможности и точность методов исследования : [c.438]    [c.88]    [c.295]    [c.12]    [c.21]    [c.254]    [c.455]    [c.369]    [c.5]   
Смотреть главы в:

Движение по орбитам  -> Возможности и точность методов исследования



ПОИСК



Возможности метода

Методы исследования

Методы исследования точности



© 2025 Mash-xxl.info Реклама на сайте