Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроскопия тепловая

Метод малых баз 287 Микрорельеф внутризеренный сдвиговый 22, 216, 255 Микроскопия тепловая 5, 11  [c.302]

Микроскопия тепловая 491 — Параметры установок для высокотемпературных исследований 492 — Схема установки типа ИМАШ-20-75 Ала-Тоо 491 Миллиамперметры 465 Милливольтметры 465 Модуль касательной упругости — Определение 139—141  [c.555]

Равномерность толщины слоя покрытия зависит от подвижности расплава. Для характеристики этого свойства с помощью теплового микроскопа исследовали растекание таблетки из смеси порошков на никеле и железе. При этом фиксировали температуру  [c.157]


Выявление структуры аустенита суш ествуюш ими методами цветного вакуумного травления [271] происходит в течение длительного времени (2—30 мин). Поэтому ни эти, ни другие известные методы тепловой микроскопии [272—274] не годятся для изучения структурных изменений в стали при объемном упрочнении деформированием со скоростями, близкими к условиям горячей обработки давлением (прокатка, штамповка, ковка и т. д.).  [c.181]

Заслуживает внимания еще один аспект оптико-механической аналогии. В заданной области пространства могут распространяться световые колебания различных частот. Может случиться так, что коэффициент преломления п зависит от частоты. Это явление называется дисперсией . При наличии дисперсии первоначальный волновой фронт оптических приборах это явление называется хроматической аберрацией . Явлению дисперсии в оптике тоже может быть предложена соответствующая механическая аналогия. Механические траектории, начинающиеся перпендикулярно базисной поверхности S = О, могут несколько различаться по своей полной энергии Е. Это происходит, например, в электронном микроскопе, где тепловое движение электронов вызывает небольшой разброс значений их полной начальной энергии Е. Это приводит к дисперсии и к небольшой хроматической аберрации в картине, получаемой с помощью электронного микроскопа.  [c.312]

В сборнике показаны уровень и результаты исследований в области создания и совершенствования методов и средств тепловой микроскопии и изучения строения и свойств металлов и сплавов при механическом нагружении и тепловом воздействии. Приведены сведения о новой аппаратуре для низко- и высокотемпературного деформирования при статическом и циклическом нагружении, обладающей расширенными экспериментальными возможностями.  [c.2]

Развитие основных отраслей современного машиностроения в значительной мере определяется созданием новых конструкционных материалов, повышением свойств существующих металлов и сплавов, а также усовершенствованием процессов их производства и упрочнения. Это, в свою очередь, требует глубокого изучения строения и свойств материалов, как применяемых в машиностроении в настоящее время, так и новых. Поэтому в практике металловедческих исследований все большее внимание уделяется разработке, созданию и применению прогрессивных способов изучения металлических материалов в широком температурном диапазоне, к которым прежде всего следует отнести методы низко- и высокотемпературной металлографии, объединяемые под общим термином тепловая микроскопия .  [c.3]


Физические методы исследования, включая тепловую микроскопию, помогают раскрыть реальный смысл указанных структурных параметров и уточнить кинетические зфавнения, определяющие их изменение. Наряду с микроструктурным изучением процессов пластической деформации и разрушения конструкционных металлических и других материалов в условиях высокотемпературного нагрева или охлаждения до криогенных температур тепловая микроскопия вносит большой вклад в разработку физи-  [c.3]

Весьма важным обстоятельством для успешного внедрения тепловой микроскопии в практику металловедческих исследований явилась организация в 1963 г. на Фрунзенском заводе контрольноизмерительных приборов (КИП) серийного производства ряда разработанных в Институте машиноведения установок для высокотемпературной металлографии. Это дало возможность оснастить лаборатории многих научно-исследовательских и учебных институтов, а также промышленных предприятий установками различных типов (ИМАШ-5С-65, ИМАШ-9-66, ИМАШ-10-68, ИМАШ-5С-69 Киргизстан ), что несомненно способствует широкому развитию исследований, проводимых в данном направлении.  [c.4]

Статьи, заключенные в данный сборник, содержат результаты исследований, выполненных за последние годы в области изучения микроструктурных особенностей деформационных процессов и разрушения в поликристаллических металлических материалах (в том числе композиционных) в условиях теплового и механического воздействия. При проведении исследований использованы методы качественной и количественной тепловой микроскопии в сочетании с другими физическими методами. В ряде работ содержатся сведения о методиках и аппаратуре, применяемых для получения прямых экспериментальных данных об изменениях микростроения и уровня механических свойств изучаемых материалов. Значительное внимание в сборнике уделено изучению микроструктурных особенностей развития пластической деформации сталей и сплавов, биметаллических композиций и сварных соединений при тепловом воздействии в условиях статического и циклического нагружения.  [c.4]

Материалы, содержащиеся в книге, наглядно иллюстрируют экспериментальные возможности тепловой микроскопии и свидетельствуют о несомненной целесообразности их использования для решения широкого круга задач физического металловедения. Можно полагать, что сообщаемые сведения будут интересны и полезны материаловедам, связанным с изучением строения и свойств металлических и неметаллических объектов в условиях программированного теплового и механического нагружения.  [c.4]

МЕТОДЫ И СРЕДСТВА ТЕПЛОВОЙ МИКРОСКОПИИ  [c.5]

ПУТИ АВТОМАТИЗАЦИИ СРЕДСТВ ТЕПЛОВОЙ МИКРОСКОПИИ  [c.5]

Методы тепловой микроскопии, например, высокотемпературная вакуумная металлография [ 1 ], позволяющая установить связь между свойствами зерен, их границ и поликристаллического агрегата в целом, первоначально основывались на эффекте термического травления , а также на всех явлениях, связанных с объемными изменениями, приводящими к соответствующему изменению геометрического профиля поверхности исследуемого образца. К таким явлениям относятся диффузия и фазовые превращения и любые другие процессы расслоения структуры при нагреве ИЛИ охлаждении фаз с различными коэффициентами термического расширения.  [c.5]

При дальнейшем развитии методов и средств высокотемпературной металлографии было показано, что поскольку интегральные свойства реальных поликристаллов определяются свойствами отдельных зерен и их границ, между которыми существуют отклонения, то неравномерность протекания деформационных процессов в различных элементах структуры также приводит к изменению рельефности поверхности образца. Благодаря этому создается контраст изображения в световом микроскопе и появляется источник информации об особенностях поведения поликристаллического агрегата в условиях теплового воздействия и механического нагружения [2].  [c.5]

Таким образом, результативность и достоверность методов тепловой микроскопии и, в частности, высокотемпературной металлографии, в значительной мере определяется факторами, оказывающими влияние на формирование геометрического профиля поверхности исследуемого образца во-первых, средой и условиями испытания, обусловливающими ту или иную степень полноты отображения процессов, характерных не только для поверхностных слоев, но и для внутренних объемов исследуемых материалов и, во-вторых, исходной рельефностью микрошлифа, зависящей от способа его приготовления и выявления структуры образца.  [c.5]


Основной особенностью существующих технических средств тепловой микроскопии является их доступность, заключающаяся в простоте принципов низко- и высокотемпературного металлографических анализов и несложности конструктивного выполнения специализированных установок для осуществления этих методов.  [c.6]

Современные достижения в области физических исследований металлов свидетельствуют о перспективности использования не только световой, но и электронной тепловой микроскопии, когда контраст изображения обусловлен не геометрическим профилем поверхности образца, а определенными характеристиками исследуемого материала, например, работой выхода электрона при термоэлектронной или фотоэмиссии кроме того, в качестве такой характеристики может быть использован коэффициент вторичной электронной эмиссии при бомбардировке первичными электронами. Эти характеристики существенно зависят от состава, фазового состояния, ориентации и температуры изучаемого объекта, поэтому, например, эмиссионная высокотемпературная микроскопия вследствие более высокой разрешающей способности обеспечивает получение большего объема информации по сравнению со световой тепловой микроскопией. При микроструктурном изучении процессов деформирования и разрушения принципиально новые результаты могут быть получены при использовании эффекта экзоэлектронной эмиссии, позволяющего количественно характеризовать определенное энергетическое состояние локальных участков исследуемого образца, что является весьма ценным дополнением к наблюдаемым в металлографический микроскоп качественным структурным изменениям, связанным с накоплением дефектов в поверхностных слоях материала.  [c.6]

Следует отметить, что изменения в микроструктуре изучаемых методами световой тепловой микроскопии материалов не всегда могут быть зафиксированы одновременно с макроскопическими эффектами, характеризующими, например, механическое поведение материала. В частности, деформационное старение, в значительной мере определяющее уровень структурно-чувствительных свойств, не сопровождается видимыми в световой микроскоп изме-  [c.6]

Проблема создания и использования композиционных материалов, требующая детальных исследований деформационного и диффузионного взаимодействия составляющих, приводит к необходимости сочетания известных принципов тепловой микроскопии, например, растровой электронной микроскопии это может быть реализовано в виде приставок к сканирующему электронному микроскопу, позволяющих осуществлять одновременное тепловое воздействие (нагрев или охлаждение) и механическое нагружение образца.  [c.7]

При всем многообразии перспективных направлений развития тепловой микроскопии традиционные методы и средства низко- и высокотемпературной металлографии не утратили своего значения и широко применяются в практике заводских и исследовательских лабораторий. Однако все возрастающие требования технического прогресса ставят задачу коренного совершенствования существующих средств тепловой микроскопии, прежде всего, в направлении увеличения производительности и информационной мощности установок. Известно [3], что информационная мощность любой исследовательской установки может быть определена по формуле  [c.7]

Кроме того, при анализе полученных результатов следует учитывать ошибки, связанные с сущностью самого метода тепловой микроскопии. К числу таких ошибок, вносимых техникой эксперимента, так называемых артефактов , относится вакуумное термическое травление, в ряде случаев затрудняющее, например, ин-  [c.8]

При изыскании новых путей автоматизации средств тепловой микроскопии необходимо учитывать вопросы стандартизации и унификации аппаратуры, а также максимального сопряжения установок с математическими средствами обработки результатов эксперимента. Схема принципиально возможной, полностью автоматизированной системы проведения исследований на установках для тепловой микроскопии представлена на рис. 2. Как видно из рассмотрения данной схемы, автоматизация обработки информации, получаемой по всем трем основным каналам, должна предусматривать наличие специального блока обработки экспериментальных данных /, включающего в себя малогабаритную электронную вычислительную машину и систему ввода данных, полученных с помощью блока аппаратурного анализа микроструктуры //, блока регистрации изменений физических характеристик ///и блока регистрирующих механических свойств IV, а также дополнительные устройства для печатания (телетайп) V и графической выдачи результатов VI.  [c.10]

Последовательное осуществление опытно-конструкторских работ в области автоматизации средств тепловой микроскопии несомненно будет способствовать повышению эффективности научных исследований, выполняемых методами низко- и высокотемпературной металлографии.  [c.10]

Объектив 17 микроскопа расположен в охлаждаемом стакане 18 и защищен от теплового воздействия нагревателя шторкой 19.  [c.30]

Трудности применения тепловой микроскопии для непрерывного микроскопического наблюдения за структурными изменениями, происходящими в металле при испытании на термоусталость, заключаются в том, что исследуемые образцы должны обладать устойчивостью при сжатии, возникающем в полуцикле нагрева и иметь достаточно большую зону для микроскопического наблюдения с равномерной температурой и распределением деформации. Кроме того, устройство для крепления образца должно иметь высокую жесткость, особенно в месте закрепления головок, для обеспечения получения необратимых деформаций при термо-циклировании.  [c.43]

ИССЛЕДОВАНИЕ СТРОЕНИЯ И СВОЙСТВ МАТЕРИАЛОВ МЕТОДАМИ ТЕПЛОВОЙ МИКРОСКОПИИ  [c.54]

Пути автоматизации средств тепловой микроскопии. Лозинский М. Г.,  [c.161]

Количество теплоты, отводимое от образца по щупам, было определено в специальных опытах. В этих опытах при помощи термопар, укрепленных на щупе, определялось температурное поле по его длине. По этим измерениям определялся температурный градиетхт в плоскости контакта щупа с поверхностью образца. Величина диаметра круглой контактной площадки на образце (—0,3 мм) определялась яри помощи микроскопа. Тепловые потери излучением через отверстия в экране находились расчетным путем. Величина суммарных тепловых потерь составляла в опытах 5—  [c.139]


Отличительной особенностью тепло-визионных микроскопов является увеличение оптического объектива, большее единицы. У таких микроскопов, как приставка к тепловизору АГА-680, оно больше 50. Тепловизионные микроскопы предназначены в основном для обследования и измерения тепловых полей изделий микроэлектроники.  [c.139]

Особенности применения определили конструктивные особенности теплови-зионных микроскопов. Как правило, это настольные приборы, а объект исследования располагается горизонтально. Фокусировка осуществляется перемещением самого объекта, изменение увеличения — заменой части или всего объектива. Близки по конструкции и назначению к тепловизионным микроскопам ИК микрорадиометры. Оптико-механическое сканирование части объекта осуществляется перемещением столика с установленным на нем исследуемым, объектом. Скорости сканирования, как правило, медленные — от десятков секунд до нескольких минут.  [c.139]

Один из вариантов анализатора тепловых полей АТП-11 — микроскоп. Время сканирования кадра, как и у всех приборов этого типа, 5 с. Зеркальный объектив обеспечивает линейное разрешение 100 мкм в центре поля зрения и температурное резре-шение 0,5 °С.  [c.139]

Для теплового контроля интегральных микросхем, транзисторов, катодных узлов выпущена серия микрорадиометров ИКР-3, ИКР-4, ИКР-5. Перемещение осуществляется с помощью двухкоординатного микрометрического столика, визуальный контроль — с помощью встроенного микроскопа. Все приборы этога типа имеют двух-аеркальный объектив, используется модуляция излучения. Объектив обеспечивает увеличение от X10 до Х40, при этом достигается линейное разрешение 60—20 мкм, температурное разрешение 0,5—3 °С. В усилительном устройстве обеспечена линейная зависимость выходного напряжения от измеряемой температуры, что позволяет измерять температуру изделий.  [c.139]

Для создания универсальных установок с более высокой рабочей температурой исследования прочности тугоплавких материалов [37, 39, 150] сделаны новые разработки [43, 44, 45, 96, 101, 148], а также использованы идеи и конструкторские решения, реализованные и проверенные в специализированных установках [8, 27, 28, 143, 147, 160]. В результате разработаны универсальные высокоточные установки для иследования прочности [37, 39, 150], которые сочетают в себе преимущества комплексного использования методов растяжения — сжатия, измерения микротвердости и тепловой микроскопии, обладают большими возможностями изучения широкого круга разных матери-  [c.95]

Пионерами микроскопии металлов Сорби [5], Мартенсем [6] и Осмондом [7] с 1870 по 1880 г. были проведены эксперименты с рядом реактивов для выявления микроструктуры железа и стали. В качестве травителей они применяли разбавленные кислоты, особенно соляную и азотную, а также раствор иода в спирте. Рельефная и травящая полировка Осмонда, а также тепловое травление Мартенса [6] дополнили ранние способы травления.  [c.9]

Для исследования характеристик кратковременной и длительной прочности композиционных и тугоплавких материалов методами растяжения — сжатия, микротвердости и тепловой микроскопии в широком интервале температур в Институте проблем прочности АН УССР создана установка Микрат-4 . Схема установки представлена на рис. 1. Она состоит из камеры 1, прибора 2 для исследования микротвердости материалов и устройства 3 нагружения образца растяжением — сжатием. Откачка воздуха и газов из камеры обеспечивается механическим насосом 4 и высоковакуумным насосом 5 с ловушкой 6. Давление измеряется манометрическими преобразователями в комплекте с вакуумметром 7. Имеется возможность заполнять испытательную камеру защитной газовой средой, а также проводить испытания на воздухе. Нагревательное устройство установки подключено к стабилизатору 8 через регулятор напряжений 9, трансформатор 10 и выпрямитель 11.  [c.26]


Смотреть страницы где упоминается термин Микроскопия тепловая : [c.161]    [c.151]    [c.6]    [c.9]    [c.33]    [c.129]    [c.137]    [c.199]    [c.201]    [c.203]    [c.79]    [c.194]   
Тепловая микроскопия материалов (1976) -- [ c.5 , c.11 ]



ПОИСК



Микроскоп

Микроскопия

Микроскопия микроскопы

Микроскопия тепловая 491 — Параметры установок для высокотемпературных исследований 492 — Схема

Микроскопия тепловая 491 — Параметры установок для высокотемпературных исследований 492 — Схема установки тина ИМАШ-20-75 «АлаТоо



© 2025 Mash-xxl.info Реклама на сайте